首页|融合关系标签和位置信息的中文医疗文本因果关系抽取方法研究

融合关系标签和位置信息的中文医疗文本因果关系抽取方法研究

扫码查看
目的/意义 利用因果关系词相对位置辅助深度学习模型,提高因果关系预测能力,挖掘医疗文本增益信息.方法/过程 将医疗文本因果关系词相对位置信息表示为关系特征层嵌入预训练语言模型,融合基线模型进行实体识别及关系抽取.结果/结论 嵌入关系特征层的模型F1 值较基线模型BERT-BiLSTM-CRF和CasRel分别提升2.92 个百分点和6.41 个百分点,因果关系预测能力较好.
Study on the Method of Causality Extraction from Chinese Medical Texts by Integrating Relational Label and Location Information
Purpose/Significance The relative positions of causality words are utilized to assist deep learning models to improve cau-sality prediction and mine medical text gain information.Method/Process The relative position information of causality words in medical texts is represented as a relational feature layer embedded in a pre-trained language model,and the baseline model is integrated for enti-ty recognition and relationship extraction.Result/Conclusion The F1 value of the model embedded in the relational feature layer is im-proved by 2.92 percentage points and 6.41 percentage points compared with the baseline models BERT-BiLSTM-CRF and CasRel,re-spectively,with better causal prediction capacity.

natural language processingcausality extractionpre-training modelBERTmedical text

张维宁、申喜凤、李美婷、高东平

展开 >

中国医学科学院/北京协和医学院医学信息研究所/图书馆 北京 100020

首都医科大学附属北京潞河医院 北京 101149

黑龙江省高级人民法院 哈尔滨 150090

自然语言处理 因果关系抽取 预训练模型 BERT 医疗文本

科技创新2030——"新一代人工智能"重大项目

2020AAA0104905

2024

医学信息学杂志
中国医学科学院

医学信息学杂志

CSTPCD
影响因子:1.348
ISSN:1673-6036
年,卷(期):2024.45(1)
  • 1
  • 8