首页|中文电子病历命名实体识别方法研究

中文电子病历命名实体识别方法研究

扫码查看
目的/意义 探索基于中文电子病历的命名实体识别方法在构建医学知识图谱和相关应用推广方面的技术可行性.方法/过程 采用真实医疗电子病历数据对词嵌入表示模型进行精化,构建医学术语专有嵌入表示,并利用卷积神经网络等多模型提取局部语义特征,实现基于堆叠注意网络的中文医疗命名实体识别.结果/结论 堆叠注意网络模型F1 值达到91.5%,较其他模型具备更强的医疗命名实体识别性能.进一步解决中文医疗命名实体识别难点,在实现全局语义特征全面深入提取的同时降低时间成本.
Study on Named Entity Recognition of Chinese Electronic Medical Records
Purpose/Significance To explore the technical feasibility of named entity recognition(NER)method based on Chinese electronic medical records(EMR)in the construction of medical knowledge graph and related application promotion.Method/Process The word embedding representation model is refined by using real EMR data,and the proprietary embedding representation of medical terms is constructed.Moreover,multiple models such as convolutional neural network(CNN)are used to extract local semantic features to realize the recognition of Chinese medical named entities based on stacked attention network(SAN).Result/Conclusion The F1 val-ue of SAN model reaches 91.5%,which has stronger performance of medical NER than other models,so as to further solve the difficulty of Chinese medical NER,achieve comprehensive and in-depth extraction of global semantic features,and reduce the time cost.

electronic medical recordsnamed entity recognitionstacked attention network

陈婕卿、竹志超、张锋、曾可、姜会珍、程振宁

展开 >

中国医学科学院北京协和医院信息中心 北京 100730

北京工业大学信息学部 北京 100124

北京安妮福克斯信息咨询有限公司 北京 100005

电子病历 命名实体识别 堆叠注意网络

科技创新2030—"新一代人工智能"重大项目

2020AAA0104900

2024

医学信息学杂志
中国医学科学院

医学信息学杂志

CSTPCD
影响因子:1.348
ISSN:1673-6036
年,卷(期):2024.45(4)
  • 8