首页|鼻咽癌放疗后大出血风险机器学习预测模型构建

鼻咽癌放疗后大出血风险机器学习预测模型构建

扫码查看
目的/意义 构建鼻咽癌放疗后大出血风险预测模型,并评价其预测效能.方法/过程 选取郑州大学第一附属医院2016-2019年鼻咽癌放疗后大出血的住院患者为研究对象,随机选取同等数量未出现大出血的患者为对照组,收集两组患者的病历指标数据,分别应用多种机器学习算法并选取最优算法构建模型.结果/结论 基于支持向量机算法的模型召回率为0.94、F1值为0.93、精确度为0.93,效果最好,可用于构建鼻咽癌放疗后大出血预测模型,为患者提供更精确的个体化预测,具有良好的临床应用前景.
Construction of a Machine Learning Prediction Model for the Risk of Massive Hemorrhage After Radiotherapy for Nasopharyn-geal Carcinoma
Purpose/Significance To construct a risk prediction model for postoperative massive bleeding in nasopharyngeal carcino-ma after radiotherapy,and to evaluate its predictive performance.Method/Process Inpatients with major bleeding after radiotherapy for nasopharyngeal cancer in the First Affiliated Hospital of Zhengzhou University from 2016 to 2019 are selected as the study objects,and the same number of patients without major bleeding are randomly selected as the control group.The medical record index data of the two groups of patients are collected,and various machine learning algorithms are applied respectively and the optimal algorithm is selected to build the model.Result/Conclusion The model based on support vector machine(SVM)algorithm has a recall rate of 0.94,an F1 val-ue of 0.93,and a precision of 0.93,showing the best performance.It can be used to construct a prediction model for postoperative mas-sive bleeding in nasopharyngeal carcinoma,and provide more accurate personalized prediction for patients,which has good clinical appli-cation prospects.

nasopharyngeal cancermassive bleedingdisease prediction modelmachine learning

葛晓伟、李星丹、张伟祎、底瑞青、程铭

展开 >

郑州大学第一附属医院 郑州 450008

鼻咽癌 大出血 疾病预测模型 机器学习

河南省重点研发与推广专项(科技攻关)项目河南省医学科技攻关计划软科学项目

222102210112RKX202202021

2024

医学信息学杂志
中国医学科学院

医学信息学杂志

CSTPCD
影响因子:1.348
ISSN:1673-6036
年,卷(期):2024.45(7)
  • 11