首页|Rociletinib (CO-1686) enhanced the efficacy of chemotherapeutic agents in ABCG2-overexpressing cancer cells in vitro and in vivo

Rociletinib (CO-1686) enhanced the efficacy of chemotherapeutic agents in ABCG2-overexpressing cancer cells in vitro and in vivo

扫码查看
Overexpression of adenosine triphosphate (ATP)-binding cassette subfamily G member 2 (ABCG2) in cancer cells is known to cause multidrug resistance (MDR),which severely limits the clinical efficacy of chemotherapy.Currently,there is no FDA-approved MDR modulator for clinical use.In this study,rociletinib (CO-1686),a mutant-selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI),was found to significantly improve the efficacy of ABCG2 substrate chemotherapeutic agents in the transporter-overexpressing cancer cells in vitro and in MDR tumor xenografts in nude mice,without incurring additional toxicity.Mechanistic studies revealed that in ABCG2-overexpressing cancer cells,rociletinib inhibited ABCG2-mediated drug efflux and increased intracellular accumulation of ABCG2 probe substrates.Moreover,rociletinib,inhibited the ATPase activity,and competed with[125I]iodoarylazidoprazosin (IAAP) photolabeling of ABCG2.However,ABCG2 expression at mRNA and protein levels was not altered in the ABCG2-overexpressing cells after treatment with rociletinib.In addition,rociletinib did not inhibit EGFR downstream signaling and phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK).Our results collectively showed that rociletinib reversed ABCG2-mediated MDR by inhibiting ABCG2 efflux function,thus increasing the cellular accumulation of the transporter substrate anticancer drugs.The findings advocated the combination use of rociletinib and other chemotherapeutic drugs in cancer patients with ABCG2-overexpressing MDR tumors.

RociletinibTyrosine kinase inhibitorMultidrug resistanceABCG2ATPase

Fanpu Zeng、Fang Wang、Zongheng Zheng、Zhen Chen、Kenneth Kin Wah To、Hong Zhang、Qian Han、Liwu Fu

展开 >

The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China

State Key Laboratory of Oncology in South China

Collaborative Innovation Center for Cancer Medicine,Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China

School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, SAR, China

Guangzhou Handy Biotechnological Co., Ltd., Guangzhou 511400, China

展开 >

We would like to thank DrSusan Bates (Columbia University/New York Presbyterian Hospital,Manhattan,NY,USA) for the ABCG2-overexpNational Natural Science Foundation of China

grant number 81673463

2020

药学学报(英文版)

药学学报(英文版)

CSTPCDCSCDSCI
ISSN:
年,卷(期):2020.10(5)
  • 3
  • 2