首页|DNMT3A loss drives a HIF-1-dependent synthetic lethality to HDAC6 inhibition in non-small cell lung cancer
DNMT3A loss drives a HIF-1-dependent synthetic lethality to HDAC6 inhibition in non-small cell lung cancer
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
万方数据
维普
DNMT3A encodes a DNA methyltransferase involved in development,cell differentiation,and gene transcription,which is mutated and aberrant-expressed in cancers.Here,we revealed that loss of DNMT3A promotes malignant phenotypes in lung cancer.Based on the epigenetic inhibitor library synthetic lethal screening,we found that small-molecule HDAC6 inhibitors selectively killed DNMT3AA-defective NSCLC cells.Knockdown of HDAC6 by siRNAs reduced cell growth and induced apoptosis in DNMT3A-defective NSCLC cells.However,sensitive cells became resistant when DNMT3A was rescued.Furthermore,the selectivity to HDAC6 inhibition was recapitulated in mice,where an HDAC6 inhibitor retarded tumor growth established from DNMT3A-defective but not DNMT3A parental NSCLC cells.Mechanistically,DNMT3A loss resulted in the upregulation of HDAC6 through decreasing its promoter CpG methylation and enhancing transcription factor RUNX1 binding.Notably,our results indicated that HIF-1 pathway was activated in DNMT3A-defective cells whereas inactivated by HDAC6 inhibition.Knockout of HIF-1 contributed to the elimination of synthetic lethality between DNMT3A and HDAC6.Interestingly,HIF-1 pathway inhibitors could mimic the selective efficacy of HDAC6 inhibition in DNMT3A-defective cells.These results demonstrated HDAC6 as a HIF-1-dependent vulnerability of DNMT3A-defective cancers.Together,our findings identify HDAC6 as a potential HIF-1-dependent therapeutic target for the treatment of DNMT3A-defective cancers like NSCLC.