首页|基于生物信息学筛选分析脓毒症预后相关核心基因

基于生物信息学筛选分析脓毒症预后相关核心基因

扫码查看
目的 基于生物信息学分析影响脓毒症预后的潜在核心基因.方法 利用基因表达数据库(Gene Expression Om-nibus,GEO)筛选到脓毒症患者的基因表达数据集GSE54514和GSE65682,通过加权基因共表达网络分析(weighted gene co-ex-pression network analysis,WGCNA)和维恩分析筛选与脓毒症预后相关的关键基因,采用Metascape数据库、RcisTarget包和CIBER-SORT算法进行基因功能富集分析、转录因子富集分析及免疫浸润分析.选取数据集GSE5772进行验证,筛选与脓毒症预后相关的核心基因并使用Kaplan-Meier法进行生存分析.结果 对数据集GSE54514、GSE65682分别进行WGCNA分析,筛选出与脓毒症预后相关性最高的"绿色"和"棕色"模块,并对两个模块的基因取交集,维恩分析得到20个关键基因.这些关键基因主要富集在细胞形态调节、单核细胞迁移等通路上.转录因子富集分析显示转录因子ZNF148可能是基因集的主要调控因子之一.进一步通过数据集GSE5772验证,发现基因FGD3、MBP、MSN、RNF130和SETD1B在脓毒症患者中明显低表达(P<0.05).免疫浸润分析表明这5个核心基因均与免疫细胞含量密切相关,其中只有FGD3、MSN和RNF130的表达与脓毒症患者的生存率相关(P<0.05).结论 基于生物信息学分析筛选到与脓毒症预后相关的5个核心基因,这些基因与免疫细胞密切相关,其中基因FGD3、MSN和RNF130可能是脓毒症预后的重要预测因子.
Identification and Analysis of Prognosis-related Core Genes in Sepsis Based on Bioinformatics
Objective To identify the potential core genes affecting the prognosis of sepsis based on bioinformatics.Methods The Gene Expression Omnibus(GEO)database was used to screen the gene expression datasets GSE54514 and GSE65682 from septic pa-tients.Key genes related to the prognosis of sepsis were screened by weighted gene co-expression network analysis(WGCNA)and Venn analysis.the Metascape database,the RcisTarget package,and the CIBERSORT algorithm were used to perform gene function enrichment analysis,transcription factor enrichment analysis,and immune infiltration analysis.The dataset GSE5772 was selected for validation to screen core genes associated with the prognosis of sepsis,and the survival analysis was performed by the Kaplan-Meier method.Results Co-expression network analysis was performed on the datasets GSE54514 and GSE65682,respectively,and the"green"and"brown"modules with the highest prognostic correlation to sepsis were selected.The intersection of genes in the two modules was taken,and 20 key genes were obtained by Venn analysis.These key genes were mainly enriched into the regulation of cell morphology,monocyte migration,and other pathways.Enrichment analysis of the transcription factor showed that the transcription factor ZNF148 might be one of the main regulators of the gene set.Further verification of data set GSE5772 revealed that the genes FGD3,MBP,MSN,RNF130 and SETD1B were significantly low expressed in septic patients(P<0.05).Immune infiltration analysis showed that these five core genes were closely related to the content of immune cells.The expressions of FGD3,MSN and RNF130 were correlated with the survival rate of septic pa-tients(P<0.05).Conclusion Five core genes associated with the prognosis of sepsis were screened via bioinformatics methods,which are closely related to immune cells.The genes FGD3,MSN and RNF130 may be important predictors for the prognosis of sepsis.

SepsisPrognosisBioinformaticsWeighted gene co-expression network analysis

汪茜、龚睿、龙刚宇、黄朝林、张定宇

展开 >

430023 华中科技大学同济医学院附属武汉金银潭医院重症医学科

230001 合肥,中国科学技术大学生命科学与医学部第一附属医院重症医学科

脓毒症 预后 生物信息学 加权基因共表达网络分析

国家自然科学基金资助项目

92169107

2024

医学研究杂志
中国医学科学院

医学研究杂志

CSTPCD
影响因子:0.702
ISSN:1673-548X
年,卷(期):2024.53(1)
  • 17