首页|基于临床病理特征的胃癌脉管或神经侵犯模型的构建与分析

基于临床病理特征的胃癌脉管或神经侵犯模型的构建与分析

扫码查看
目的 探讨胃癌患者发生脉管侵犯(lymph blood vessel invasion,LBVI)或周围神经侵犯(preineural invasion,PNI)的危险因素,并构建预测LBVI或PNI发生风险的列线图模型.方法 收集2014年5月~2022年3月青海省人民医院收治的268例胃癌患者的临床与病理资料,采用单因素及多因素Logistic回归分析筛选发生LBVI或PNI的危险因素,基于多因素Logistic回归分析结果构建列线图模型,采用受试者工作特征(receiver operating characteristics,ROC)曲线和校准曲线评价列线图模型的诊断效能,采用临床决策分析(clinical decision analysis,DCA)曲线分析列线图预测模型的临床获益性.结果 268例胃癌患者中,119例(44.4%)发生LBVI或PNI,149例(55.6%)未发生LBVI或PNI.单因素Logistic回归分析结果显示,肿瘤最大径、分化程度、病理分期、浸润深度和淋巴结转移数目是胃癌患者发生LBVI或PNI的危险因素(P<0.05);多因素Logistic回归分析结果显示,肿瘤最大径、分化程度和淋巴结转移数目是胃癌患者发生LBVI或PNI的独立危险因素(P<0.01);基于上述3个危险因素建立LBVI或PNI风险列线图模型,模型的ROC曲线下面积为0.806,敏感度为63.9%,特异性为83.2%,校准曲线内部验证得到一致性指数为0.811,平均绝对误差值(mean absolute error value,MAE)为 0.016;Hosmer-Lemeshow 检验结果显示,P>0.05;DCA曲线的阈值概率为0.08~0.97时,患者的临床净获益率较高.结论 肿瘤最大径、分化程度和淋巴结转移数目是胃癌患者发生LBVI或PNI的独立危险因素,基于危险因素构建的LBVI或PNI风险列线图预测模型有较好的预测效率和临床适用性,该模型有助于临床预测胃癌患者是否发生LBVI或PNI.
Construction and Analysis of Vascular or Nerve Invasion Models of Gastric Cancer Based on Clinicopathological Features
Objective To explore the risk factors of lymph blood vessel invasion(LBVI)or preineural invasion(PNI)in patients with gastric cancer,and to construct a nomogram model to predict the risk of LBVI or PNI.Methods The clinical and pathological data of 268 patients with gastric cancer admitted to Qinghai Provincial People's Hospital from May 2014 to March 2022 were collected.The risk factors of LBVI or PNI were screened by univariate and multivariate Logistic regression analysis.Based on the multivariate Logistic regres-sion analysis results,a nomogram model was constructed.The diagnostic efficacy of the nomogram model was evaluated by receiver operat-ing characteristics(ROC)curve and calibration curve,and the clinical benefit of the nomogram prediction model was analyzed by clinical decision analysis(DCA)curve.Results Among 268 patients with gastric cancer,119(44.4%)had LBVI or PNI,and 149(55.6%)had no LBVI or PNI.Univariate Logistic regression analysis showed that tumor diameter,differentiation degree,pathological stage,depth of invasion and number of lymph node metastasis were the risk factors for LBVI or PNI in patients with gastric cancer(P<0.05).Multi-variate Logistic regression analysis showed that tumor diameter,differentiation degree and number of lymph node metastasis were independ-ent risk factors for LBVI or PNI in gastric cancer patients(P<0.01).Based on the above three risk factors,the LBVI or PNI risk nomo-gram model was established.The area under the ROC curve of the model was 0.806,the sensitivity was 63.9%,and the specificity was 83.2%.The consistency index was 0.811,the mean absolute error value(MAE)was 0.016,and the Hosmer-Lemeshow test showed that P>0.05.When the threshold probability of DCA curve was 0.08-0.97,the clinical net benefit rate of patients was higher.Conclusion Tumor diameter,differentiation degree and number of lymph node metastasis are independent risk factors for LBVI or PNI in patients with gastric cancer.The risk nomogram prediction model of LBVI or PNI based on risk factors has good prediction efficiency and clinical applicability,which is helpful to predict whether LBVI or PNI occurs in patients with gastric cancer.

Gastric cancerVascular invasionNerve invasionRisk factorsNomogram

蔡甲慧、荣光宏

展开 >

810016 西宁,青海大学研究生院

523710 广东医科大学附属东莞第一医院消化内科

胃癌 脉管侵犯 神经侵犯 危险因素 列线图

青海省卫生健康委员会医药卫生指导性计划课题

2021-wjzdx-02

2024

医学研究杂志
中国医学科学院

医学研究杂志

CSTPCD
影响因子:0.702
ISSN:1673-548X
年,卷(期):2024.53(6)
  • 8