首页|新生儿坏死性小肠结肠炎的LASSO-BN模型研究

新生儿坏死性小肠结肠炎的LASSO-BN模型研究

扫码查看
目的 通过LASSO回归进行变量初筛,根据初筛结果进行多因素Logistic回归分析以及采用最大最小爬山法(max-min hill-climbing,MMHC)构建贝叶斯网络模型,探讨新生儿坏死性小肠结肠炎(necrotizing enterocolitis,NEC)的相关因素及各因素间复杂的网络关系,并通过比较2种模型以寻找最优的建模工具.方法 以2020年1月~2023年12月在山西省儿童医院(山西省妇幼保健院)新生儿内科、新生儿外科、NICU住院的所有NEC患儿为研究对象,回顾性收集NEC调查数据并利用LASSO回归进行变量初筛,根据初筛结果进行多因素Logistic回归分析以及采用MMHC混合算法进行结构学习和极大似然估计法进行参数学习,构建NEC贝叶斯网络模型.结果 经过变量初筛后,早产、低体重出生儿、喂养方式、宫内窘迫及出生后窒息史、贫血、无创呼吸机、益生菌、妊娠期糖尿病、C反应蛋白(C-reactive protein,CRP)和降钙素原(procalcitonin,PCT)10个因素纳入构建模型.贝叶斯网络模型结果显示,建模组和验证组的受试者工作特征(receiver operating characteristic,ROC)曲线下面积分别为0.825和0.817,准确率分别为89.78%和90.43%;多因素Logistic回归分析结果显示,建模组和验证组的ROC曲线下面积分别为0.777和0.741,准确率分别为70.01%和69.44%;贝叶斯网络模型性能优于多因素Logistic回归分析.并且贝叶斯网络模型显示,低体重出生儿、喂养方式、益生菌和PCT与NEC直接相关,早产及无创呼吸机通过低体重出生与NEC间接相关,CRP通过PCT与NEC间接相关.结论 通过比较2种模型,发现贝叶斯网络模型是一种深入研究NEC与相关因素及各因素间网络关系的有效工具.通过这个模型,能够精确地评估NEC与各因素的关联强度,为NEC防治提供科学依据.
Study of LASSO-BN Model for Necrotizing Enterocolitis in Newborns
Objective To screen variables through LASSO regression,conduct multifactor Logistic regression analysis based on the screening results,and construct a Bayesian network model using max-min hill-climbing(MMHC)algorithm to explore the related fac-tors of necrotizing enterocolitis(NEC)in newborns and the complex network relationships among factors.The study also aimed to compare the two models to find the optimal modeling tool.Methods All NEC patients admitted to the Department of Neonatology,Department of Neonatal Surgery,and NICU of Shanxi Children's Hospital(Shanxi Maternal and Child Health Hospital)from January 2020 to December 2023 were retrospectively studied.NEC investigation data were collected and variable screening was conducted using LASSO regression.Multifactor Logistic regression analysis was performed based on the screening results.The MMHC mixed algorithm was employed for struc-ture learning,and the maximum likelihood estimation method was used for parameter learning to construct the NEC Bayesian network model.Results After variable screening,10 factors including prematurity,low birth weight,feeding method,intrauter distress and post-natal asphyxia history,anemia,non-invasive ventilator,probiotics,gestational diabetes,C-reactive protein(CRP),and procalcitonin(PCT)were included in the model construction.The area under the receiver operating characteristic(ROC)curve of the Bayesian net-work model in the modeling group and validation group were 0.825 and 0.817,respectively,with accuracies of 89.78%and 90.43%,respectively.The AUC of the multifactor Logistic regression analysis in the modeling group and validation group were 0.777 and 0.741,respectively,with accuracies of 70.01%and 69.44%,respectively.The performance of the Bayesian network model was superior to that of multifactor Logistic regression analysis.Furthermore,the Bayesian network model showed that low birth weight,feeding method,probi-otics,and PCT were directly related to NEC,prematurity and non-invasive ventilator were indirectly related to NEC through low birth weight,and CRP was indirectly related to NEC through PCT.Conclusion By comparing the two models,it was found that the Bayesian network model is an effective tool for in-depth study of NEC and the network relationships among related factors.Through this model,the association strength between NEC and various factors can be accurately evaluated,providing a scientific basis for the prevention and treat-ment of NEC.

LASSO regressionLogistic regression analysisBayesian network modelNecrotizing enterocolitisRelevant factors

杨启越、贾晓云、张新华、周浩、康娅楠、王星雨、白丽霞

展开 >

030001 太原,山西医科大学公共卫生学院流行病学教研室

030001 太原,山西医科大学附属儿童医院

030001 太原,山西医科大学第二医院

030001 太原,山西省儿童医院(山西省妇幼保健院)医务科

展开 >

LASSO回归 Logistic回归分析 贝叶斯网络模型 坏死性小肠结肠炎 相关因素

2024

医学研究杂志
中国医学科学院

医学研究杂志

CSTPCD
影响因子:0.702
ISSN:1673-548X
年,卷(期):2024.53(11)