首页|基于成像表型的多组学分析识别膀胱癌TP53突变模式的价值

基于成像表型的多组学分析识别膀胱癌TP53突变模式的价值

The value of identifying TP53 mutation pattern in bladder cancer by multi-omics analysis based on imaging phenotype

扫码查看
目的:基于放射组学、深度学习、病理组学多组学分析成像表型特征与膀胱癌(BLCA)肿瘤蛋白53(TP53)突变模式的关系.方法:基于公共数据库下载 57 例BLCA患者的多组学数据.以术前动脉期CT提取放射组学和深度学习特征,从术后苏木精-伊红染色病理图提取病理组学特征.主成分分析和Relief双重降维特征后,基于随机森林算法开发TP53 突变列线图.使用受试者操作特性曲线下面积(AUC)评估列线图的性能.结果:经过 21 个放射组学特征、9 个深度学习特征和 9 个病理组学特征降维后确定 24 个特征开发列线图,训练队列和验证队列的曲线下面积分别为 0.95 和 0.87,准确率为 0.88 和 0.88,灵敏度为 0.87 和 0.90,特异度为 0.88 和 0.86.结论:利用多组学成像表型信息互补作用阐明了成像表型特征与BLCA—TP53 突变模式的关系,可作为TP53 突变的非侵入性替代标记,为精准医学管理提供依据.
Objective The aim was to investigate the relationship between imaging phenotypic features and TP53 mutation patterns in bladder cancer(BLCA)based on radiomics,deep learning,and pathomic through multi-omics analysis.Methods Multi-omics data of 57 BLCA patients were downloaded from public databases.Radiomics and deep learning features were extracted from pre-operative arterial phase CT scans,while pathomic features were extracted from post-operative hematoxylin and eosin(H&E)stained pathological images.After dimensionality reduction using principal component analysis and Relief,a nomogram for TP53 mutation prediction was developed based on the random forest algorithm.The performance of the nomogram was evaluated using the area under the receiver operating characteristic curve(AUC).Results After dimensionality reduction of 21 radiomics features,9 deep learning features,and 9 pathomic features,24 features were identified for developing the nomogram.The AUCs for the training and validation cohorts were 0.95 and 0.87,respectively,with accuracy of 0.88 and 0.88,sensitivity of 0.87 and 0.90,and specificity of 0.88 and 0.86.Conclusion The complementary role of multi-omics imaging phenotypic information was utilized to elucidate the relationship between imaging phenotypic features and BLCA-TP53 mutation patterns.This approach could serve as a non-invasive surrogate marker for TP53 mutations,providing a basis for precision medicine management.

Bladder cancerTP53 mutationRadiomicsDeep learningPathomicMulti-omics analysis

陈潇豫、魏达友、林艳、何敏诗、张朝浩、林攀、吴林永

展开 >

茂名市人民医院CT科 广东 茂名 525000

茂名市人民医院超声医学科 广东 茂名 525000

茂名市人民医院病理科 广东 茂名 525000

膀胱癌 TP53突变 放射组学 深度学习 病理组学 多组学分析

茂名市科技计划

2023210

2024

影像研究与医学应用

影像研究与医学应用

ISSN:
年,卷(期):2024.8(17)