首页|基于源体生长思想的全张量重力梯度数据联合反演

基于源体生长思想的全张量重力梯度数据联合反演

扫码查看
基于源体生长思想的三维反演是一种使用系统搜索的反演方法.和正则化反演相比,该方法计算量小,运算速度快.源体生长的判断准则是其核心,影响着结果质量.本文提出了一种全张量重力梯度数据源体生长反演方法,旨在提高纵向的反演效果.首先,在判断准则中引入深度加权函数,优化对不同深度上源体生长的判断;其次,根据单分量梯度数据反演结果,调整不同类型数据的权重,建立联合反演方法;最后,利用矩阵压缩减少内存占用,提高反演计算效率.通过模型数据与文顿盐丘地区实测数据试验,证明了提出的方法能够有效地引导源体生长,对深部目标具有更高的分辨能力,适用于较复杂形态目标的反演,且具有较高的计算效率和抗噪性.
Joint inversion of full-tensor gravity gradiometry data based on source growing
Three-dimensional inversion based on source growing uses systematic searches.Compared with the regularization inversion,this method has lower computational requirements and faster processing speed.The criteria determining the source growth is crucial for the quality of the results.This study proposes an inversion based on source growing with full-tensor gravity gradiometry data to improve vertical inversion effectiveness.First,a depth weighting function is introduced for the criteria to optimize the determination of source growing at different depths.Second,the weights of different data are adjusted based on the inversion results of single-component gradient data,and a joint inversion method is established.Finally,matrix compression reduces memory occupation and improves computational efficiency.By the tests of synthetic data and real data from Vinton Dome,it is demonstrated that the proposed method can effectively guide source growing,providing stronger ability for distinguishing deep targets and being suitable for the inversion of complex-shaped targets.Furthermore,the method has high computational efficiency and anti-noise ability.

Full-tensor gravity gradiometry datasource growingjoint inversionmatrix compression

侯振隆、赵信阳、张代磊、赵福权、王家辉

展开 >

东北大学资源与土木工程学院,沈阳

中国地质科学院,北京

中基发展建设工程有限责任公司,北京

全张量重力梯度数据 源体生长 联合反演 矩阵压缩

国家自然科学基金

42204140

2024

应用地球物理(英文版)
中国地球物理学会

应用地球物理(英文版)

影响因子:1.01
ISSN:1672-7975
年,卷(期):2024.21(2)
  • 24