首页|基于MVIDA算法和MS-SE-ResNet的次声事件分类方法

基于MVIDA算法和MS-SE-ResNet的次声事件分类方法

扫码查看
次声事件的分类识别是禁核试核查的一项重要任务.能正确有效地区分地震次声、化学爆炸次声等瞬时次声有助于次声事件分类识别工作的推进.为解决地震次声、化学爆炸次声信号的数据量较少,在训练时容易出现过拟合这一问题,本文提出一种基于混合虚拟数据增强算法和多尺度和通道注意力的残差分类网络的分类方法.本文设计了的仿真对比实验来验证所提方法的有效性.实验结果表明,多尺度和通道注意力的残差分类网络能够有效找出化学爆炸和地震的次声在频域上的可分性,在使用了混合虚拟数据增强算法增强后的数据集上的平均分类精度为81.12%.高于其他四类对比分类方法,证明了该增强算法和分类网络在小样本次声事件分类上的有效性和稳定性.
Classification method of infrasound events based on the MVIDA algorithm and MS-SE-ResNet
The verification of nuclear test ban necessitates the classification and identification of infrasound events.The accurate and effective classification of seismic and chemical explosion infrasounds can promote the classification and identification of infrasound events.However,overfitting of the signals of seismic and chemical explosion infrasounds easily occurs during training due to the limited amount of data.Thus,to solve this problem,this paper proposes a classification method based on the mixed virtual infrasound data augmentation(MVIDA)algorithm and multiscale squeeze-and-excitation ResNet(MS-SE-ResNet).In this study,the effectiveness of the proposed method is verified through simulation and comparison experiments.The simulation results reveal that the MS-SE-ResNet network can effectively determine the separability of chemical explosion and seismic infrasounds in the frequency domain,and the average classification accuracy on the dataset enhanced by the MVIDA algorithm reaches 81.12%.This value is higher than those of the other four types of comparative classification methods.This work also demonstrates the effectiveness and stability of the augmentation algorithm and classification network in the classification of few-shot infrasound events.

infrasound classificationpower spectrumCNNdata enhancement

谭笑枫、李夕海、牛超、曾小牛、李鸿儒、刘天佑

展开 >

火箭军工程大学,陕西西安 710025

次声分类 功率谱 卷积神经网络 数据增强

2024

应用地球物理(英文版)
中国地球物理学会

应用地球物理(英文版)

影响因子:1.01
ISSN:1672-7975
年,卷(期):2024.21(4)