首页|深度学习结合平稳小波包变换压制地震随机噪声

深度学习结合平稳小波包变换压制地震随机噪声

扫码查看
很多传统去噪方法在降噪的同时往往会模糊、丢失细节或边缘信息,如高斯滤波等.平稳小波包变换(SWPT)是一种多尺度多频带分析工具,具有多分辨率和多频带性等优点,与平稳小波变换相比,在压制高频噪声的同时保留更多的边缘细节;深度学习在去噪领域取得了长足进步,残差网络DnCNN、高效灵活网络FFDNet、编解码网络U_Net以及生成对抗网络GAN去噪效果均优于传统最优三维块匹配方法BM3D.为此,提出了一种基于SWPT和修改的FFDNet衰减随机噪声的网络SWP_hFFDNet.该网络结合了SWPT、Huber范数和FFDNet的优势,有三个特点:一、SWPT是一种有效的特征提取工具,可获得信号低频特征和不同尺度不同频带的高频特征;二、噪声水平图作为网络的输入可提高对不同噪声水平的去噪性能;三、Huber范数可降低网络对异常数据的敏感性,增强鲁棒性.网络训练采用Adam算法和经增广和加噪并经SWPT分解的BSD500数据集.数值试验和实际数据处理结果表明:对低噪声,本文方法与BM3D、DnCNN和FFDNet网络的去噪效果基本相同;对强噪声,本文方法优于BM3D、DnCNN和FFDNet网络.
Suppression of seismic random noise by deep learning combined with stationary wavelet packet transform
Many traditional denoising methods,such as Gaussian filtering,tend to blur and lose details or edge information while reducing noise.The stationary wavelet packet transform is a multi-scale and multi-band analysis tool.Compared with the stationary wavelet transform,it can suppress high-frequency noise while preserving more edge details.Deep learning has significantly progressed in denoising applications.DnCNN,a residual network;FFDNet,an efficient,flexible network;U-NET,a codec network;and GAN,a generative adversative network,have better denoising effects than BM3D,the most popular conventional denoising method.Therefore,SWP hFFDNet,a random noise attenuation network based on the stationary wavelet packet transform(SWPT)and modified FFDNet,is proposed.This network combines the advantages of SWPT,Huber norm,and FFDNet.In addition,it has three characteristics:First,SWPT is an effective feature-extraction tool that can obtain low-and high-frequency features of different scales and frequency bands.Second,because the noise level map is the input of the network,the noise removal performance of different noise levels can be improved.Third,the Huber norm can reduce the sensitivity of the network to abnormal data and enhance its robustness.The network is trained using the Adam algorithm and the BSD500 dataset,which is augmented,noised,and decomposed by SWPT.Experimental and actual data processing results show that the denoising effect of the proposed method is almost the same as those of BM3D,DnCNN,and FFDNet networks for low noise.However,for high noise,the proposed method is superior to the aforementioned networks.

random noisestationary wavelet packet transformdeep learningnoise level mapHuber norm

樊华、王东博、张扬、王文旭、李涛

展开 >

河南省地震局,郑州,450016

中国核电工程有限公司,北京,100840

河南省城市地震地质安全工程技术中心,郑州,450016

随机噪声 平稳小波包变换 深度学习 噪声水平图 Huber范数

2024

应用地球物理(英文版)
中国地球物理学会

应用地球物理(英文版)

影响因子:1.01
ISSN:1672-7975
年,卷(期):2024.21(4)