首页|基于深度学习的不同分辨率CT扫描图像预测碳酸盐岩渗透率

基于深度学习的不同分辨率CT扫描图像预测碳酸盐岩渗透率

扫码查看
基于岩心的较低分辨率CT扫描图像常面临孔隙结构信息不足及细节不完整等方面的挑战,因此非均质储层岩心的渗透率预测非常依赖于高分辨率CT扫描图像.然而,这种方法数据量大且成本高昂.为解决这一问题,本文提出一种基于深度学习的不同分辨率CT扫描图像预测岩心渗透率的方法.首先将岩心的高分辨率CT扫描图像进行预处理并提取立方体子集,再利用格子玻尔兹曼(LBM)方法计算每个子集的渗透率,形成卷积神经网络(CNN)模型的训练集.其次对高分辨率图像进行降采样处理,获取低分辨率灰度图像.通过对不同低分辨率图像的孔隙度进行对比分析,文中将分辨率为原始图像10%的低分辨率图像作为测试集,发现较低分辨率图像预测的渗透率与LBM计算的结果高度吻合.进一步将测试数据与Kozeny-Carman(KC)模型预测结果以及样本的实测渗透率进行了对比,结果显示基于深度学习的不同分辨率CT扫描图像预测碳酸盐岩渗透率结果具有可靠性.
Prediction of carbonate permeability from multi-resolution CT scans and deep learning
The low-resolution CT scan images obtained from drill core generally struggle with problems such as insufficient pore structure information and incomplete image details.Consequently,predicting the permeability of heterogeneous reservoir cores relies heavily on high-resolution CT scanning images.However,this approach requires a considerable amount of data and is associated with high costs.To solve this problem,a method for predicting core permeability based on deep learning using CT scan images with different resolutions is proposed in this work.First,the high-resolution CT scans are preprocessed and then cubic subsets are extracted.The permeability of each subset is estimated using the Lattice Boltzmann Method(LBM)and forms the training set for the convolutional neural network(CNN)model.Subsequently,the high-resolution images are downsampled to obtain the low-resolution grayscale images.In the comparative analysis of the porosities of different low-resolution images,the low-resolution image with a resolution of 10%of the original image is considered as the test set in this paper.It is found that the permeabilities predicted from the low-resolution images are in good agreement with the values calculated by the LBM.In addition,the test data are compared with the results of the Kozeny-Carman(KC)model and the measured permeability of the whole sample.The results show that the prediction of the permeability of tight carbonate rock based on deep learning using CT scans with different resolutions is reliable.

CT scansdeep learningcarbonatepermeability

张琳、陈广东、巴晶、José M.Carcione、徐文豪、方志坚

展开 >

河海大学地球科学与工程学院,南京 211100

National Institute of Oceanography and Applied Geophysics(OGS),Trieste,Italy 34010

中国石油集团东方地球物理勘探有限责任公司物探技术研究中心,涿州 072751

CT图像 深度学习 碳酸盐岩 渗透率预测

2024

应用地球物理(英文版)
中国地球物理学会

应用地球物理(英文版)

影响因子:1.01
ISSN:1672-7975
年,卷(期):2024.21(4)