首页|基于改进Deformable-DETR的水下图像目标检测方法

基于改进Deformable-DETR的水下图像目标检测方法

扫码查看
针对由于水下复杂环境造成的目标检测效果较差、检测精度较低的问题,基于Deformable-DETR算法提出一种改进的水下目标检测算法Deformable-DETR-DA.使用空间注意力模块结合标准Transformer块设计了一个用于增加模型深度的深度特征金字塔(deep feature pyramid networks,DFPN)模块,将其嵌入到模型中提高模型对深层纹理信息的提取能力.使用注意力引导的方式对原模型中编码器部分进行改进,加强了对特征信息的聚合能力,提高了模型在复杂环境下的检测能力.针对URPC数据集,模型各交并比尺度的平均准确度(average precision,AP)为 39.5%,相比原模型提升 1%,与一些DETR(detection transformer)类的模型相比,不同目标尺度的平均准确度均有 1%~4%左右的提高,表明改进的模型能够很好解决复杂环境的水下目标检测的问题.本文提出的模型可作为其他水下目标检测模型设计的参考.
An object detection method of underwater image based on improved Deformable-DETR
Aiming at the problem of poor object detection effect and low detection accuracy caused by complex underwater environments,an improved underwater target detection algorithm Deformable-DETR-DA is proposed based on the Deformable-DETR algorithm.Using the spatial attention module and the standard Transformer block,a DFPN block is designed to increase the depth of model,and the DFPN block is embedded into the model to improve the ability of the model to extract the deep texture information.The encoder part of the original model is improved by using attention guidance,which strengthens the aggregation ability of feature information and improves the detection ability of the model in a complex environment.For the URPC dataset,the average precision(AP)of each intersection over union scale of the model is 39.5%,which is 1%higher than the original model.Compared with some DETR-like models,the average precision of different object scales is improved by 1%~4%,which shows that the improved model can well solve the problem of underwater object detection in complex environments.The model proposed in this paper can serve as a reference for the design of other underwater object detection models.

underwater optical imageDeformable-DETRobject detectionTransformerattention mechanismdeep learningimage processingresidual network

崔颖、韩佳成、高山、陈立伟

展开 >

哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001

水下光学图像 Deformable-DETR 目标检测 Transformer 注意力机制 深度学习 图像处理 残差网络

黑龙江省自然科学基金项目

LH2020F021

2024

应用科技
哈尔滨工程大学

应用科技

CSTPCD
影响因子:0.693
ISSN:1009-671X
年,卷(期):2024.51(1)
  • 9