首页|基于改进混合樽海鞘群算法的航空发动机模型求解方法

基于改进混合樽海鞘群算法的航空发动机模型求解方法

扫码查看
针对传统智能优化算法在求解航空发动机模型非线性方程组时收敛速度慢、精度低的问题,提出采用樽海鞘群优化算法(salps swarm algorithm,SSA).为了提升标准SSA求解复杂发动机模型的随机搜索能力,采用了混沌映射、正余弦算法、自适应权重、逐维变异策略对SSA进行改进,并且更进一步调整了算法流程(Process improved SSA),提高算法收敛概率,最终将Process improved SSA与Newton-Raphson算法结合为混合算法,并以适应度值作为算法切换的判断条件以提升混合算法的计算效率.仿真实验验证了Process improved SSA求解航空发动机模型的有效性.仿真结果表明混合算法能够实现全局收敛并提升收敛速度,且能够在模型输入强瞬变仿真时实现快速收敛.
A solution method of aero-engine model based on the improved hybrid salps swarm algorithm
Aiming at the problems of slow convergence speed and low precision of traditional intelligent optimization algorithm in solving nonlinear equations of aeroengine model,a new salp swarm optimization algorithm(SSA)is proposed.In order to improve the random search ability of the standard SSA to solve complex engine models,SSA is improved by using the chaotic mapping,the sine-cosine algorithm,the adaptive weight,and the dimension-wise mutation strategy.And the algorithm process(Process improved SSA)is further adjusted to increase the algorithm convergence probability.Finally,the Process improved SSA and Newton-Raphson algorithm are combined into a hybrid algorithm,using the fitness value as the judgment condition for algorithm switch to improve the computational efficiency of the hybrid algorithm.After simulation tests,the effectiveness of Process improved SSA in solving the aeroengine model is verified.The simulation results show that the hybrid algorithm can achieve global convergence and improve the convergence speed,and can achieve fast convergence when the model is input with strong transient simulation.

nonlinear modelaeroengineintelligent optimization algorithmsalp swarm algorithmchaos mappingsine cosine algorithmNewton-raphson methodhybrid algorithm

沈昂、徐含灵、胡春艳、谭湘敏

展开 >

江苏大学流体机械工程技术研究中心,江苏镇江 212013

中国科学院工程热物理研究所/轻型动力重点实验室,北京 100190

中国科学院轻型动力创新研究院,北京 100190

中国科学院大学航空宇航学院,北京 100049

展开 >

非线性模型 航空发动机 智能优化算法 樽海鞘群算法 混沌映射 正余弦算法 Newton-Raphson算法 混合算法

国家级基础科研重点项目

JCKY2020130C025

2024

应用科技
哈尔滨工程大学

应用科技

CSTPCD
影响因子:0.693
ISSN:1009-671X
年,卷(期):2024.51(2)
  • 23