首页|基于对齐性和均匀性约束的图神经网络会话推荐方法

基于对齐性和均匀性约束的图神经网络会话推荐方法

扫码查看
会话推荐(session-based recommendation,SBR)旨在匿名状态下通过用户的短期历史行为序列来预测下一个待点击的项目.为解决现有基于图神经网络(graph neural networks,GNNs)的会话推荐方法忽略会话中不同位置相同项目之间差异的问题,在图卷积获得项目表示后,进一步考虑该项目与相邻项目之间的相关性,生成邻域相关的项目表示.此外,鉴于对齐性和均匀性在对比学习中的起到的重要作用,还提出了一种适用于会话推荐的对齐性和均匀性损失方法,以约束生成的会话表示和项目表示.在 3 个公开数据集上的实验表明,文中提出的模型TAU-GNN的推荐性能优于对比的主流会话推荐模型.
Graph neural network toward representation alignment and uniformity for session-based recommendation
Session-based recommendation(SBR)aims to predict the next click item of an anonymous user based on a short interaction sequence.In order to solve the problem that existing SBR methods based on graph neural networks(GNNs)ignore the differences between the same items at different locations in a session,after obtaining an item embedding by a GNN,we further consider the correlation of its neighbor items in a session to generate the item neighborhood correlation representation.Considering the importance of alignment and uniformity in contrastive learning,we propose an alignment and uniformity loss method for session recommendation to constrain the generated session representation and item representation.Experiments on three public benchmark datasets show that our newly proposed model TAU-GNN is better than that of the mainstream models for SBR.

session-based recommendationgraph neural networksalignmentuniformitycontrastive learningcross entropy lossanonymous sessionneighborhood information

唐韬韬、楚飞、汪炅、贾彩燕

展开 >

北京交通大学计算机与信息技术学院,北京 100044

交通数据分析与挖掘北京市重点实验室,北京 100044

会话推荐 图神经网络 对齐性 均匀性 对比学习 交叉熵损失 匿名会话 邻域信息

国家重点研发计划

2018AAA0100302

2024

应用科技
哈尔滨工程大学

应用科技

CSTPCD
影响因子:0.693
ISSN:1009-671X
年,卷(期):2024.51(2)
  • 28