首页|一种小样本情境下的高光谱图像分类算法

一种小样本情境下的高光谱图像分类算法

扫码查看
Gabor滤波器是一种常见的空间特征提取技术,在针对高光谱图像分类中已标记样本稀缺的问题上,该算法通过设置不同方向的多个 3D-Gabor滤波器,生成大量多视图.在多视图数据基础上生成多个图连接实现标签传播,将多个图标签传播后的分类结果融合得到预测标结果.而超像素主成分分析法算法则是一种简单但非常有效的无监督特征提取方法,将预测结果与加入了超像素主成分分析法的分类器相加权融合得到更为准确的分类结果.将算法在 3 个数据集上进行仿真实验,结果表明通过应用Gabor滤波器的传统高光谱图像分类算法存在运算量大且耗时长,而该算法能够在保证精度的同时有效减少计算及时间上的消耗,节约成本.
A hyperspectral image classification algorithm for few shot contexts
Gabor filter is a common spatial feature extraction technique.In order to address the problem of sparse labelled samples in hyperspectral image classification,the algorithm in this paper generates a large number of multiple views by setting multiple 3D-Gabor filters in different directions.The algorithm generates multiple graph connections on the basis of the multi-view data to achieve label propagation,and fuses the classification results of multiple graph labels propagated to obtain the predicted label results.The superpixel principal component analysis(Super PCA)algorithm is a simple but very effective unsupervised feature extraction method,where the prediction results are weighted and fused with the classifier incorporating Super PCA to obtain more accurate classification results.Simulations of this algorithm on three datasets show that traditional hyperspectral image classification algorithms using Gabor filters are computationally intensive and time-consuming,whereas this algorithm can reduce computational and time consumption while ensuring accuracy and cost savings.

few shothyperspectral image classification3D-Gabor filtermultiviewlabel propagationsuperpixel segmentationsemi-supervised learningactive learning

张裕、陈立伟、崔颖

展开 >

哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨 150001

小样本 高光谱图像分类 3D-Gabor滤波器 多视图 标签传播 超像素分割 半监督学习 主动学习

国家自然科学基金

61675051

2024

应用科技
哈尔滨工程大学

应用科技

CSTPCD
影响因子:0.693
ISSN:1009-671X
年,卷(期):2024.51(3)
  • 20