首页|直觉模糊的结构化最小二乘孪生支持向量机

直觉模糊的结构化最小二乘孪生支持向量机

扫码查看
针对最小二乘孪生支持向量机(least squares twin support vector machine,LS-TSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squares twin support vector machine,IF-SLSTSVM).首先采用孤立森林对输入样本点进行预处理;然后通过直觉模糊数的概念,赋予输入样本点不同的权重以减少噪声或是异常数据对分类超平面产生的影响;最后采用K-Means算法,以协方差的形式获取输入样本点之间的结构信息.IF-SLSTSVM在LS-TSVM的基础上,考虑了输入样本点在特征空间中的分布信息及输入样本点之间的关系,提高了模型的鲁棒性.实验采取UCI数据集,在0%、5%、10%以及20%的不同比例噪声环境对IF-SLSTSVM算法的有效性进行验证.结果显示相较于6种对比算法,IF-SLSTSVM算法有更好的鲁棒性.
Intuition Fuzzy and Structural Least Squares Twin Support Vector Machine
Addressing the sensitivity of the least squares twin support vector machine(LS-SVM)to noise or abnormal data,and its tendency to overlook intrinsic structural in-formation in the data,this paper introduces an intuition fuzzy and structural least squares twin support vector machine(IF-SLSTSVM).Firstly,the input sample points undergo preprocessing using isolated forest.Subsequently,leveraging the concept of intuitionistic fuzzy,varying weights are assigned to the input sample points to mitigate the impact of noise or abnormal data on the classification hyperplane.Finally,the K-Means algorithm is employed to extract structural information,represented in the form of covariance,among the input sample points.Built upon LS-SVM,IF-SLSTSVM takes into account the distri-bution information of input sample points in the feature space and their interrelationships,thereby enhancing the model's robustness.Experimental validation is performed using the UCI dataset in noise environments with different proportions of 0%,5%,10%,and 20%.The results demonstrate that the IF-SLSTSVM algorithm exhibits superior robust-ness compared to six other evaluated algorithms.

support vector machineisolated foreststructural informationintuition fuzzyclusteringcovariance

张法滢、吕莉、韩龙哲、刘东晓、樊棠怀

展开 >

南昌工程学院信息工程学院,江西南昌 330099

南昌工程学院南昌市智慧城市物联感知与协同计算重点实验室,江西南昌 330099

支持向量机 孤立森林 结构信息 直觉模糊 聚类 协方差

国家自然科学基金江西省重点研发计划项目江西省重点研发计划项目

6206603020192BBE5007620203BBGL-73225

2024

应用科学学报
上海大学 中国科学院上海技术物理研究所

应用科学学报

CSTPCD北大核心
影响因子:0.594
ISSN:0255-8297
年,卷(期):2024.42(2)
  • 33