首页|一种基于领域自适应的智能合约安全分析框架

一种基于领域自适应的智能合约安全分析框架

扫码查看
现有智能合约漏洞检测方案很大程度上依赖于缜密的专家规则或先验知识,不仅缺乏灵活性且难以应对新型未知漏洞检测,为此提出一种基于领域自适应的智能合约安全分析框架(domain adaptive security analysis framework,DASAF).首先,在 DASAF 中,智能合约操作码执行逻辑被获取并被转化为序列特征.其次,为了解决深度学习模型中固有的数据偏移现象引起的模型老化,以及新型未知漏洞有标签样本不足导致的难以获得强泛化性能的问题,在DASAF中引入了生成对抗网络结构和领域自适应技术.最后,在一个公开基准数据集上详细评估了 DASAF在智能合约漏洞分析领域的有效性,并与同类方案进行了对比,实验结果表明,本文提出的DASAF优于同类方案.
A Domain Adaptive Security Analysis Framework for Smart Contracts
The available smart contract vulnerability detection schemes mostly rely on expert-defined rules,which lack flexibility and struggle with new unknown vulnerabilities.To address this challenge,we present a novel framework called domain adaptive security analysis framework(DASAF).Firstly,we obtain the execution logic of smart contract opcodes and convert them into meaningful sequential features.Secondly,to overcome the inherent data bias in deep learning models,which leads to model aging and difficulty in achieving strong generalization performance due to insufficient labeled samples in new unknown vulnerabilities,the DASAF framework introduces adversarial generative network structure and domain adaptation techniques.Finally,we evaluate the effectiveness of the DASAF framework in the field of smart contract vulnerability analysis and detection using a public benchmark dataset,and compare it with similar schemes.The experimental results demonstrate the superiority of the DASAF framework over comparable approaches.

smart contractdomain adaptation techniquesgenerative adversarial networkvulnerability detectiondeep learning

王娜、朱会娟、宋香梅、冯霞

展开 >

江苏大学计算机科学与通信工程学院,江苏镇江 212013

江苏大学汽车与交通工程学院,江苏镇江 212013

智能合约 领域自适应技术 生成对抗网络 漏洞检测 深度学习

国家自然科学基金

62272204

2024

应用科学学报
上海大学 中国科学院上海技术物理研究所

应用科学学报

CSTPCD北大核心
影响因子:0.594
ISSN:0255-8297
年,卷(期):2024.42(4)
  • 3