Based on a functionally graded thin-walled cylindrical microshell model with elastic support,the modal frequency equation was derived by using the modified couple stress theory and the first-order shear deformation theory.The impacts of the elastic support,size effect,temperature gradient,material component index,pore and geometry dimensions on the modal frequencies of the cylindrical microshell were studied.Results indicate that the impacts of elastic stiffness coefficient on the modal frequencies can be neglected in the range of 0 to 105N/m3,but the shear stiffness coefficient has a great influence on the modal frequencies in the range of 0 to 5 × 104N/m.Moreover,increasing the shear stiffness coefficient is beneficial to increasing the modal frequencies.The modal frequencies obtained by modified couple stress theory are larger than those obtained by classical continuum theory.With or without elastic support and size effect,the modal frequencies decrease with the increase of the temperature gradient and the length of the cylindrical microshell,and increase with the increase of the ceramic volume fraction index.The change laws of the modal frequencies are different with the variation of the pore volume fraction and thickness of the cylindrical microshell.The temperature gradient has a great influence on the modal frequencies of the cylindrical microshell considering size effect or elastic foundation.The influence of pore on the modal frequencies with elastic foundation is especially obvious.
thermal environmentelastic supportfunctionally graded materialmicro cylindrical shellmodal frequency