首页|砂岩单轴压缩黏弹塑性分数阶蠕变模型研究

砂岩单轴压缩黏弹塑性分数阶蠕变模型研究

扫码查看
为建立参数少、计算简便、蠕变过程描述准确的蠕变模型,基于岩石力学及分数阶理论,引入分数阶软体元件,将其与弹性、塑性、黏性元件相结合,得到了创新的黏弹塑性蠕变模型,推导蠕变模型的本构方程,并对砂岩单轴压缩蠕变试验数据进行参数辨识、曲线拟合和对比分析,进而对蠕变模型进行验证。结果表明:引入的分数阶软体元件应变随时间呈幂函数趋势增长,可表征非线性蠕变阶段,详细地分析了弹性元件、塑性元件、黏性元件及分数阶软体元件在蠕变过程中不同阶段发挥的作用;推导得到模型在(ε)(t→∞)=0(σ<σs)、(ε)(t→∞)>0(σ<σs)、(ε)(t→∞)>0(σ≥σs)情况下的本构方程,以及计算简便的参数辨识方法,试验数据拟合曲线的拟合度均在 0。9 以上,验证了蠕变模型的合理性和科学性;所建立的六参数黏弹塑性分数阶模型能全面地描述蠕变的整个过程,并且与其他模型对比模型参数更少、计算量更小。
Study on the viscoelastic-plastic fractional creep model of sandstone in uniaxial compression
In order to establish a creep model with few parameters,simple calculation and accurate de-scription of the creep process,based on rock mechanics and fractional order theory,fractional-order soft components were introduced and combined with elastic,plastic and viscous components,and an innovative viscous model was obtained.The elastic-plastic creep model was used to derive the constitutive equation of the creep model,and the parameter identification and curve fitting and comparative analysis were per-formed on the sandstone uniaxial compression creep test data,and then the model was verified.The results showed that the strain of the introduced fractional-order soft element increases with time as a power func-tion,which can characterize the nonlinear creep stage.The creep process of elastic element,plastic ele-ment,viscous element and fractional-order soft element was analyzed in detail.The constitutive equations of the model under three different conditions (ε)(t→∞)=0(σ<σs),(ε)(t→∞)>0(σ<σs),(ε)(t→∞)>0(σ≥σs)and the parameter identification method with simple calculation were derived,and the fitting de-gree of the fitting curve of the test data was above 0.9.The rationality and scientificity of the creep model were verified.The established six-parameter viscoelastic-plastic fractional order model could comprehen-sively describe the whole process of creep,and compared with other models,the model required fewer parameters and less computation.

fractional theorycreep modelparameter identificationnonlinear fitting

何峰、杨松

展开 >

辽宁工程技术大学力学与工程学院,123000 阜新

分数阶理论 蠕变模型 参数辨识 非线性拟合

2024

应用力学学报
西安交通大学

应用力学学报

CSTPCD北大核心
影响因子:0.398
ISSN:1000-4939
年,卷(期):2024.41(6)