首页|基于GRU深度学习的短时临近降水预报订正方法

基于GRU深度学习的短时临近降水预报订正方法

扫码查看
为提高短时临近降水预报准确率,提出一种订正广西对流尺度数值预报模式(GRAPES-GX)降水预报产品的深度学习方法.该方法通过神经网络对实况进行时空特征提取,以门控循环网络(GRU)为基础框架,针对降水产品进行改进,并用于GRAPES-GX降水预报产品订正.在此基础上,设计了大气物理规律适配模块,通过物理条件匹配机制订正模式预报降水强度与落区的系统性误差,增强训练样本中预报产品和实况的特征相关性,并协同优化模型参数,获得更优的订正效果.广西区域试验结果表明:订正模型在各预报时效、各降水强度等级的TS(threat score)评分均得到正技巧,总体TS技巧评分为2.21%.对于不低于0.1 mm·h-1、不低于2 mm·h-1、不低于7 mm·h-1、不低于15 mm·h-1、不低于25 mm·h-1和不低于40 mm·h-1降水强度预报TS技巧评分分别为5.67%、3.59%、2.18%、1.46%、1.01%和0.46%.0~2 h、2~4 h和4~6 h时效预报TS技巧评分分别为4.77%、1.28%和 0.91%.
Short-term Precipitation Correction Based on GRU Deep Learning
To improve the accuracy of short-term precipitation forecasts,a deep learning method is proposed to correct numerical model precipitation forecast products.This method extracts spatiotemporal features from numerical model forecasts and observations using a neural network and performs corrections based on a gated recurrent unit(GRU)framework.Additionally,an atmospheric physics adaptor module is meticu-lously designed to address systematic errors in the intensity and displacement of numerical model forecast by leveraging physical condition mechanisms.The module plays a crucial role within the overarching model framework,which consists of three integrated components:Feature network,recurrent-revising network,and physical adaptor.The feature network extracts precipitation intensity,distribution,motion character-istics and other related atmospheric physical features from precipitation in situ and numerical model fore-cast data,serving as input to the recurrent-revising network.Recurrent-revising network utilizes a recur-rent neural network structure to adjust grid point forecast results on a time-step basis.Deep neural net-works are used to extract spatiotemporal variation features from numerical model forecast data and histori-cal observations,learning systematic errors in the evolution processes to correct the precipitation magni-tude and distribution.The physical adaptor is an atmospheric physics adaptation module,which prepro-cesses numerical model forecast data using frequency distribution fitting and distribution deviation correc-tion methods.In Guangxi convective-scale model precipitation forecast data,when there are significant differences between numerous samples and the precipitation in situ,the feature correlation is low,making it a challenge to capture systematic error characteristics during neural network training.By preprocessing the samples with the physical adaptor,differences between forecasts and observations are reduced,enhan-cing feature correlation between training input datasets and observations,thus facilitating better neural network training and achieving superior correction skills.This method not only adheres to but also in-tegrates fundamental atmospheric physical laws governing precipitation evolution,thereby offering a ro-bust and innovative approach for post-processing numerical model short-term precipitation forecasts.By incorporating these physical principles into the model framework,corrected forecasts not only reflect sta-tistical patterns but also adhere closely to the underlying physical processes driving precipitation dynamics.Experimental results in Guangxi indicate that the model demonstrates positive threat score skills across va-rious forecast times and precipitation intensitis.Specifically,for different precipitation intensities(average of all times),threat score skills for 0.1 mm·h-1,2 mm·h-1,7 mm·h-1,15 mm·h-1,25 mm·h-1,and 40 mm·h-1 are 5.67%,3.59%,2.18%,1.46%,1.01%,and 0.46%,respectively;for different lead times,threat score skills for 0-2 h,2-4 h,and 4-6 h are 4.77%,1.28%,and 0.91%,respective-ly;and the overall average threat score skill across all precipitation intensitis and times is 2.21%.

forecast correctiondeep learningGRU

曾小团、邹晨曦、范娇、王庆国、黄大剑、梁潇、丁禹钦、谭肇

展开 >

广西壮族自治区气象台,南宁 530022

北京思湃德信息技术有限公司,北京 100081

预报订正 深度学习 门控循环网络

2024

应用气象学报
中国气象科学研究院 国家气象中心 国家卫星气象中心 国家气候中心 国家气象信息中心 中国气象局气象探测中心

应用气象学报

CSTPCD北大核心
影响因子:1.459
ISSN:1001-7313
年,卷(期):2024.35(5)