首页|基于PSO-ORB-DWT-SVD的鲁棒水印算法

基于PSO-ORB-DWT-SVD的鲁棒水印算法

扫码查看
针对水印算法中存在的水印不可见性与鲁棒性之间难以权衡的问题,提出一种结合离散小波变换(DWT)和奇异值分解(SVD),并融合粒子群优化(PSO)与定向快速旋转(ORB)的鲁棒水印算法.在水印嵌入阶段,首先对载体进行分块,然后对每个子块做一级DWT,选择其LL分量做二级DWT,再选择变换后的LL分量做SVD得到U矩阵,选取U 矩阵第一列,利用 PSO 选择最佳位置进行水印的嵌入;在受到攻击时,利用 ORB 提取特征点进行矫正.实验结果表明,所提算法具有较好的水印不可见性,且对于噪声、滤波、压缩、旋转和剪切等多种攻击表现出较强的鲁棒性.
A Robust Watermarking Algorithm Based on PSO-ORB-DWT-SVD
Addressing the challenging trade-off between invisibility and robustness in watermarking algorithms,a novel robust watermarking algorithm is proposed,which combines discrete wavelet transform(DWT)and singular value decomposition(SVD),and integrates particle swarm optimization(PSO)with oriented fast and rotated brief(ORB).In the watermark embedding stage,the host image is first blocked,and then each sub-block undergoes a one-level DWT.The LL component is selected for a second-level DWT,and the transformed LL component is further processed by SVD to obtain the U matrix.The first column of the U matrix is selected,and PSO is utilized to choose the optimal location for watermark embedding.When attacked,ORB is employed to extract feature points for correction.Experimental results demonstrate that the proposed algorithm exhibits good invisibility and strong robustness against various attacks such as noise,filtering,compression,rotation,and cropping.

digital watermarkdiscrete wavelet transformsingular value decompositionparticle swarm optimizationrobustness

刘振帅、王树梅

展开 >

江苏师范大学 计算机科学与技术学院,江苏 徐州 221116

数字水印 离散小波变换 奇异值分解 粒子群优化算法 鲁棒性

2024

湖南理工学院学报(自然科学版)
湖南理工学院

湖南理工学院学报(自然科学版)

影响因子:0.259
ISSN:1672-5298
年,卷(期):2024.37(4)