首页|基于线性混合模型的红松人工林一级枝条大小预测模拟

基于线性混合模型的红松人工林一级枝条大小预测模拟

扫码查看
基于黑龙江省孟家岗林场60株人工红松955个标准枝数据,采用线性混合效应模型理论和方法,考虑树木效应,利用SAS软件中的MIXED模块拟合红松人工林一级枝条各因子(基径、枝长、着枝角度)的预测模型.结果表明:通过选择合适的随机参数和方差协方差结构能够提高模型的拟合精度;把相关性结构包括复合对称结构CS、一阶自回归结构AR(1)及一阶自回归与滑动平均结构ARMA(1,1)加入到一级枝条大小最优混合模型中,AR(1)可显著提高枝条基径和角度混合模型的拟合精度,但3种结构均不能提高枝条角度混合模型的精度.为了描述混合模型构建过程中产生的异方差现象,把CF1和CF2函数加入到枝条混合模型中,CF1函数显著提高了枝条角度混合模型的拟合效果,CF2函数显著提高了枝条基径和长度混合模型拟合效果.模型检验结果表明:对于红松人工林一级枝条大小预测模型,混合效应模型的估计精度比传统回归模型估计精度明显提高.
Primary branch size of Pinus koraiensis plantation: A prediction based on linear mixed effect model
By using the branch analysis data of 955 standard branches from 60 sampled trees in 12 sampling plots of Pinus koraiensis plantation in Mengjiagang Forest Farm in Heilongjiang Province of Northeast China,and based on the linear mixed-effect model theory and methods,the models for predicting branch variables,including primary branch diameter,length,and angle,were developed.Considering tree effect,the MIXED module of SAS software was used to fit the prediction models.The results indicated that the fitting precision of the models could be improved by choosing appropriate random-effect parameters and variance-covariance structure.Then,the correlation structures including complex symmetry structure (CS),first-order autoregressive structure [AR(1)],and first-order autoregressive and moving average structure [ARMA (1,1)] were added to the optimal branch size mixed-effect model.The AR(1) improved the fitting precision of branch diameter and length mixed-effect model significantly,but all the three structures didn't improve the precision of branch angle mixed-effect model.In order to describe the heteroscedasticity during building mixed-effect model,the CF1 and CF2 functions were added to the branch mixed-effect model.CF1 function improved the fitting effect of branch angle mixed model significantly,whereas CF2 function improved the fitting effect of branch diameter and length mixed model significantly.Model validation confirmed that the mixed-effect model could improve the precision of prediction,as compare to the traditional regression model for the branch size prediction of Pinus koraiensis plantation.

Pinus koraiensis plantationbranch diameterbranch lengthbranch anglelinear mixed model

董灵波、刘兆刚、李凤日、姜立春

展开 >

东北林业大学林学院,哈尔滨150040

红松人工林 枝条基径 枝条长度 枝条角度 线性混合模型

2010040020072012BAD22B0202IRT1054

2013

应用生态学报
中国生态学学会 中国科学院沈阳应用生态研究所

应用生态学报

CSTPCDCSCD北大核心
影响因子:2.114
ISSN:1001-9332
年,卷(期):2013.24(9)
  • 20
  • 13