首页|基于无人机影像的鼠害地秃斑识别算法筛选

基于无人机影像的鼠害地秃斑识别算法筛选

扫码查看
鼠害型秃斑是反映草地鼠害的重要表征.利用无人机遥感技术识别高原鼠兔危害型秃斑对于评价其危害情况具有重要意义.本研究基于无人机可见光影像,使用最小距离(MinD)、最大似然(ML)、支持向量机(SVM)、马氏距离(MD)和神经网络(NN)5种监督分类算法对高原鼠兔危害地特征进行分类识别,并采用混淆矩阵对5种分类方法精度进行评价.结果表明:相较于其他3种方法,NN和SVM对高原鼠兔危害地特征进行识别分类的效果更好.其中,NN对草地与秃斑2种目标地物的制图精度分别为98.1%和98.5%,用户精度分别为98.8%和97.7%,模型总体精度为98.3%,Kappa系数为0.97,像元错分、漏分现象较低.经实践验证,NN表现出较好的稳定性.综上,神经网络方法是高寒草甸鼠害型秃斑识别的优选方法.
Screening of identification algorithm for rodent-induced bare patches based on the drone imagery
Rodent-infested bald spots are crucial indicators of rodent infestation in grasslands.Leveraging Un-manned Aerial Vehicle(UAV)remote sensing technology for discerning detrimental bald spots among plateau pikas has significant implications for assessing associated ecological hazards.Based on UAV-visible light imagery,we classified and recognized the characteristics of plateau pika habitats with five supervised classification algorithms,i.e.,minimum distance classification(MinD),maximum likelihood classification(ML),support vector machine classification(SVM),Mahalanobis distance classification(MD),and neural network classification(NN).The accuracy of the five methods was evaluated using a confusion matrix.Results showed that NN and SVM exhibited superior performance than other methods in identifying and classifying features indicative of plateau pika habitats.The mapping accuracy of NN for grassland and bald spots was 98.1% and 98.5% ,respectively,with corresponding user accuracy was 98.8% and 97.7% .The overall model accuracy was 98.3% ,with a Kappa coefficient of 0.97,reflecting minimal misclassification and omission errors.Through practical verification,NN exhibited good stability.In conclusion,the neural network method was suitable for identifying rodent-damaged bald spots within alpine meadows.

alpine meadowrodent-infested landunmanned aerial vehiclesupervised classificationneural net-work

蔡斌、董瑞、花蕊、刘济泽、王磊、郝媛媛、杨思维、花立民

展开 >

甘肃农业大学草业学院/草业生态系统教育部重点实验室/国家林业草原高寒草地鼠害防控工程技术研究中心,兰州 730070

四川省草原科学研究院/青藏高原高寒草地生态修复工程技术研究中心/色达草地生态四川省野外科学观测研究站,成都 611730

中国农业科学院草原研究所,呼和浩特 010010

高寒草甸 鼠害地 无人机 监督分类 神经网络

高校科研创新平台重大培育项目四川省自然科学基金面上项目甘肃省教育厅产业支撑计划项目

2024CXPT-072023NSFSC02072021CYZC-05

2024

应用生态学报
中国生态学学会 中国科学院沈阳应用生态研究所

应用生态学报

CSTPCD北大核心
影响因子:2.114
ISSN:1001-9332
年,卷(期):2024.35(7)