首页|基于地面高光谱的宁夏银北地区农田不同土层盐碱化信息反演

基于地面高光谱的宁夏银北地区农田不同土层盐碱化信息反演

扫码查看
土壤盐碱化严重制约着农业的可持续发展,及时掌握土壤含盐量(SSC)和pH信息对盐碱农田的改良及合理利用至关重要。本研究以宁夏银北地区石嘴山市平罗县为研究对象,以野外高光谱信息和表层(0~20 cm)、亚表层(20~40 cm)土壤盐碱指标实测值为数据源,对原始光谱反射率经Savitzky-Golay(SG)平滑后进行0~2阶(间隔0。25)分数阶微分(FOD)变换,并构建9种光谱指数,根据各指数与盐碱指标间的相关性筛选特征参量,然后基于偏最小二乘回归(PLSR)、随机森林(RF)和极端随机树(ERT)3种机器学习算法建立SSC和pH的反演模型。结果表明:1)表层光谱反射率始终与亚表层成倍数关系,FOD变换可以有效消除光谱曲线的基线漂移,突出光谱细微信息。2)表层和亚表层SSC均与差值指数(DI)、最优光谱指数(OSI)和土壤调节光谱指数(SASI)的相关性最强,最优变换阶次分别为1。5和0。75阶,pH则与比值指数(RI)、广义指数(GDI)和归一化指数(NDI)的相关性最强,最优阶次分别为0。5和0。25阶。3)不同土层盐碱指标均以ERT模型表现最佳。表层SSC反演精度高于亚表层,而pH则相反。表层SSC-1。5阶-ERT模型的验证集决定系数(Rp2)、均方根误差(RMSE)和相对分析误差(RPD)分别为0。980、0。547和5。229,亚表层pH-0。25阶-ERT模型的Rp2、RMSE和RPD分别为0。958、0。111和4。685,精度较高。本研究可为农田盐碱信息的快速获取、反演制图提供技术支撑。
Ground-based hyperspectral inversion of salinization and alkalinization of different soil layers in farmland in Yinbei area,Ningxia,China
Soil salinization and alkalization is a serious constraint to sustainable development of agriculture.Timely acquisition of soil salinity content(SSC)and pH information is crucial for improvement and rational utilization of saline-alkaline farmlands.We collected the data of field hyperspectral information and salt and alkali indicators in the surface layer(0-20 cm)and sub-surface layer(20-40 cm)in Pingluo County,Shizuishan City from Ningxia.We transformed the original spectral reflectance by Savitzky-Golay(SG)smoothing with the fractional order differ-entiation(FOD)of order 0-2(with an interval of 0.25),constructed nine spectral indices,and established the inverse models of SSC and pH based on three machine learning algorithms,namely partial least squares regression(PLSR),random forest(RF)and extreme random tree(ERT),after the screening of feature covariates according to the correlation between the indices and the examined salt and alkali indicators.The results showed that 1)the spectral reflectance of the surface layer was always multiplicative with the subsurface layer,and the FOD transform could effectively eliminate the baseline drift of the spectral curves,highlighting the subtle spectral information.2)Both surface and subsurface SSC were most strongly correlated with the difference index(DI),the optimal spectral index(OSI),and the soil-adjusted spectral index(SASI),with optimal transformation orders of 1.5 and 0.75,respectively.For pH,the strongest correlations were with the ratio index(RI),the generalized index(GDI),and the normalized index(NDI),with optimal orders of 0.5 and 0.25,respectively.3)The ERT model performed the best with respect to the salt and alkali indicators of different soil layers.The accuracy of SSC inversion was higher in the surface layer than in the subsurface layer,while the opposite was true for pH.The coefficient of determination for the validation set(Rp2),root mean square error(RMSE),and relative predictive deviation(RPD)for the sur-face SSC-1.5 order-ERT model were 0.980,0.547,and 5.229,whereas the Rp2,RMSE,and RPD of the subsur-face pH-0.25 order-ERT model were 0.958,0.111,and 4.685,respectively.Those values indicated high accuracy of the models.This study would provide technical support for the rapid acquisition and inversion mapping of farm-land salinity and alkalinity information.

salinization and alkalizationsoil layerspectral indexfractional order differentiationmachine lear-ningKriging interpolation

黄华雨、丁启东、张俊华、潘鑫、周跃辉、贾科利

展开 >

宁夏大学生态环境学院,银川 750021

宁夏大学地理科学与规划学院,银川 750021

盐碱化 土层 光谱指数 分数阶微分 机器学习 克里金插值

2024

应用生态学报
中国生态学学会 中国科学院沈阳应用生态研究所

应用生态学报

CSTPCD北大核心
影响因子:2.114
ISSN:1001-9332
年,卷(期):2024.35(11)