首页|基于无人机高光谱数据的耕地土壤盐分反演模型优选

基于无人机高光谱数据的耕地土壤盐分反演模型优选

扫码查看
土壤盐渍化是制约农业生产安全的常见问题,快速准确地获取土壤盐分信息,对改良和解决土壤盐渍化具有重要意义。本研究以无人机(UAV)高光谱遥感数据为数据源,针对耕地的不同土地利用现状,根据不同光谱转换数据筛选特征波段集合,最终对比支持向量机(SVR)、反向传播神经网络(BPNN)和随机森林回归(RFR)模型的精度,提出区域耕地土壤盐分的最佳反演模型。结果表明:采用一阶微分的光谱转换数据与随机森林回归方法结合的反演模型精度最高;针对不同土地利用现状的耕地分别进行特征波段的提取能确保模型整体精度更高,其决定系数为0。885,均方根误差为0。413,相对分析误差为4。208。研究结果可为机载高光谱实现耕地土壤盐分的高精度反演提供参考,为耕地盐碱化防治提供科学依据。
Optimal inversion model for cultivated land soil salinity based on UAV hyperspectral data
Soil salinization is a common factor constraining agricultural production safety,achieving rapid and accurate acquisition of cultivated land soil salinity information is of paramount importance for ameliorating and resol-ving soil salinization problems.In this study,with unmanned aerial vehicle(UAV)hyperspectral remote sensing data as the data source,we selected feature band subsets using various spectral transformation data based on differ-ent land use statuses of cultivated land,to compare the model accuracies of Support Vector Machine(SVR),Back Propagation Neural Network(BPNN)and Random Forest regression(RFR),and propose the optimal inversion model for regional cultivated land soil salinity.The results showed that the inversion model combining fiirst-order differential spectral transformation data with RFR achieved the highest accuracy.Extracting feature bands separately for cultivated land with different land use statuses would ensure a higher overall model accuracy,with a coefficient of determination of 0.885,a root mean square error of 0.413,and a ratio of performance to deviation of 4.208.Our results could provide a reference for achieving high-precision inversion of soil salinity in cultivated land by UAV hyperspectral technology,and offer scientific support for the prevention and control of soil salinization in cultivated land.

UAV hyperspectral remote sensingsoil salinity inversion modelspectral clusteringspectral conver-sioncompetitive adaptive reweighted sampling

程俊恺、冯秀丽、陈立波、高天宇、杜美瑾、刘治远

展开 >

宁波大学地理与空间信息技术系,浙江宁波 315211

宁波市测绘和遥感技术研究院,浙江宁波 315042

无人机高光谱遥感 土壤盐分反演模型 谱聚类 光谱转换 竞争性自适应重加权

2024

应用生态学报
中国生态学学会 中国科学院沈阳应用生态研究所

应用生态学报

CSTPCD北大核心
影响因子:2.114
ISSN:1001-9332
年,卷(期):2024.35(11)