首页|脑卒中患者运动过程中动力学特征的智能预测

脑卒中患者运动过程中动力学特征的智能预测

Intelligent Prediction for Dynamic Characteristics of Stroke Patients During Exercise

扫码查看
目的 使用主成分分析(principal component analysis,PCA)和反向传播(back propagation,BP)神经网络预测脑卒中患者行走时患侧髋、膝、踝的关节力矩.方法 30例脑卒中患者通过8镜头Qualisys红外光点高速运动捕捉系统和Kistler三维测力台同步采集运动学和动力学数据.通过OpenSim计算脑卒中患者髋、膝、踝患侧关节力矩,采用PCA筛选累积贡献率达到99%的初始变量,采用标准均方根误差(normalized root mean squared error,NRMSE)、均方根误差(root mean squared error,RMSE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和平均绝对误差(mean absolute error,MAE)、R2作为PCA-BP模型的评价指标.使用肯德尔W系数评价计算关节力矩与预测力矩之间的一致性.结果 PCA数据显示躯干、骨盆、患侧髋、膝和踝关节在x、y、z轴(矢状、冠状、垂直轴)对患侧髋、膝、踝关节力矩具有显著影响.预测值与测量值间NRMSE为5.14%~8.86%,RMSE为0.184~0.371,MAPE 为 3.5%~4.0%,MAE 为 0.143~0.248,R2 为 0.998~0.999.结论 建立的 PCA-BP 模型可准确预测脑卒中患者行走时的髋膝踝关节力矩,显著缩短测量时间.在脑卒中患者的步态分析中,本模型可代替传统的关节力矩计算,为获得脑卒中患者生物力学数据提供新途径,以及为脑卒中患者临床治疗提供有效的方法.
Objective To predict the torque on the affected side of the hip,knee,and ankle joints in stroke patients during walking using principal component analysis(PCA)and backpropagation(BP)neural networks.Methods Kinematic and dynamic data from 30 stroke patients were synchronously collected using an 8-lens Qualisys infrared point high-speed motion capture system and Kistler three-dimensional(3D)force measurement platform.The torques of the hip,knee,and ankle joints in the stroke patients were calculated using OpenSim,and the initial variables with a cumulative contribution rate of 99%were screened using PCA.The normalized root mean square error(NRMSE),root mean square error(RMSE),mean absolute percentage error(MAPE),mean absolute error(MAE),and R2 were used as evaluation indicators for the PCA-BP model.The consistency between the calculated joint torque and predicted torque was evaluated using Kendall's W coefficient.Results PCA data showed that the trunk,pelvis,and affected sides of the hip,knee,and ankle joints had a significant impact on the torque of the affected sides of the hip,knee,and ankle joints on the x,y,and z axes(sagittal,coronal,and vertical axes,respectively).The NRMSE between predicted and measured values was 5.14%-8.86%,RMSE was 0.184-0.371,MAPE was 3.5%-4.0%,MAE was 0.143-0.248,and R was 0.998-0.999.Conclusions The established PCA-BP model can accurately predict the torque of the hip,knee,and ankle joints in stroke patients during walking,with a significantly shortened measurement time.This model can replace traditional joint torque calculation in the gait analysis of stroke patients,provides a new approach to obtaining biomechanical data of stroke patients,and is an effective method for the clinical treatment of stroke patients.

mathematical modelstrokeprincipal component analysis(PCA)neural networksjoint torque

张楠、孟庆华、鲍春雨、周鲁星、崔帅琦

展开 >

天津体育学院社会体育学院,天津 301617

天津市运动损伤与康复虚拟仿真实验教学中心,天津 301617

天津体育学院运动健康学院,天津 301617

天津体育学院体育经济与管理学院,天津 301617

展开 >

数学模型 脑卒中 主成分分析 反向传播神经网络 关节力矩

国家自然科学基金项目国家自然科学基金项目天津市自然科学基金项目天津市自然科学基金项目天津市研究生创新项目天津市研究生创新项目

113722231110213517JCZDJC3600018JCZDJC359002022SKYZ3182022SKYZ319

2024

医用生物力学
上海第二医科大学

医用生物力学

CSTPCD北大核心
影响因子:0.858
ISSN:1004-7220
年,卷(期):2024.39(3)