首页|二尖瓣运动的流固耦合仿真

二尖瓣运动的流固耦合仿真

Fluid-Structure Interaction Simulation of the Mitral Valve Motion

扫码查看
目的 建立包含左心和血液的二尖瓣理想模型,用流固耦合仿真研究二尖瓣在血流中的运动特性.方法 基于解剖学参数建立二尖瓣、左心和血液模型,流固耦合仿真采用有限元结合浸没边界法,使用有限元软件LS-DYNA模拟二尖瓣运动,获取形态学、力学和血液动力学参数,并与结构仿真结果进行对比.结果 两种仿真下二尖瓣形态学结果差异较大,流固耦合结果与超声影像吻合.流固耦合仿真和结构仿真的瓣叶应力分布结果一致,最大第一主应力分别为1.48、1.53 MPa,相对误差为3.27%.左心流场有较为复杂的涡旋结构,舒张期二尖瓣最大流速为1.02 m/s,与健康人体生理数据(0.89±0.15)m/s相吻合.结论 二尖瓣流固耦合仿真可以获取更贴近于生理的形态学结果;流固耦合仿真可以提供临床诊断不可或缺的流场参数信息;单研究瓣叶应力分布问题时,结构仿真更高效.
Objective To establish an ideal model of the mitral valve,including the left heart and blood,and study the motion characteristics of the mitral valve in blood flow using the fluid-structure interaction(FSI)simulation.Methods Based on anatomical parameters,models of the mitral valve,left heart,and blood were established.The finite-elements combined immersed boundary method was used for FSI to simulate the motion of the mitral valve using the LS-DYNA software.Morphological,mechanical,and hemodynamic parameters were compared with those obtained from structural simulations.Results The morphological results of the mitral valve from the two simulations differed significantly,and the FSI results matched the ultrasound images.The stress distributions of the leaflets in the FSI and structural simulations were consistent.The maximum first principal stresses calculated by FSI and structural simulations were 1.48 MPa and 1.53 MPa,respectively,with a relative error of 3.27%.The fluid field in the left heart was complex with vortex structures,and the maximum mitral flow velocity was 1.02 m/s during diastole,consistent with the physiological data of healthy humans(0.89±0.15 m/s).Conclusions The morphological results of the mitral valve obtained from the FSI simulation were closer to those in the physiological state.FSI simulations can provide flow patterns that are indispensable for clinical diagnosis.Structural simulations are more efficient for studying leaflet stress distribution.

mitral valvefluid-structure simulation(FSI)finite-elements combined immersed boundary methodstructural simulation

居佳怡、颜文涛、魏来、高昊、王盛章

展开 >

复旦大学航空航天系,生物力学研究所,上海 200433

上海市医疗器械检验研究院,上海 201318

复旦大学附属中山医院心脏外科,上海 200032

英国格拉斯哥大学数学与统计系,格拉斯哥G12 8QQ

珠海复旦创新研究院,广东珠海 519031

展开 >

二尖瓣 流固耦合仿真 有限元结合浸没边界法 结构仿真

2024

医用生物力学
上海第二医科大学

医用生物力学

CSTPCD北大核心
影响因子:0.858
ISSN:1004-7220
年,卷(期):2024.39(3)