首页|基于随机森林算法的背包负重行走疲劳检测

基于随机森林算法的背包负重行走疲劳检测

Fatigue Detection of Walking with Backpack Load Based on Random Forest Algorithm

扫码查看
目的 使用可穿戴惯性传感器(inertial measurement unit,IMU)技术和随机森林(random forest,RF)算法检测长距离背包负重行走的疲劳水平,探究负重行走疲劳检测的可行性和最佳IMU组合方案.方法 招募 30 名健康男性大学生进行长距离背包负重行走.应用Xsens MVN Link惯性运动捕捉系统和Borg-RPE疲劳量表采集负重行走的运动学数据和主观疲劳值,将疲劳分为无疲劳、中度疲劳和重度疲劳 3 个等级.提取原始数据,进行步态分割、数据筛选和特征提取,利用RF模型对样本特征进行机器学习,最后计算准确率、精确率、混淆矩阵和受试者工作特征曲线下面积(area under the curve,AUC)对不同IMU组合的检测效果加以评定.结果 1 个右股骨IMU准确率达到 82.55%,5 个IMU组合的准确率最高,为 87.94%.在多个IMU的组合中,至少包含 1 个上半身IMU,且左侧肢体的IMU多于右侧.同时,RF模型对负重步行的疲劳检测具有较高的水平,使用 4 个IMU时,3 级疲劳的AUC分别为0.99、0.97 和0.99.结论 IMU技术和RF算法在背包负重行走的3 级疲劳检测任务中具有较高的准确率和分类能力.在实际应用中推荐采用 1~5 个IMU,上半身IMU和下肢IMU结合的配置方案.
Objective Wearable inertial measurement unit(IMU)technology and random forest(RF)algorithm were used to detect the fatigue level of long-distance walking with backpack load.Moreover,the feasibility of fatigue detection for load-bearing walking and an optimal IMU combination scheme were evaluated.Methods Thirty healthy male college students were recruited for long-distance backpack walking.The Xsens MVN Link inertial motion capture system and Borg-RPE fatigue scale were used to collect the kinematic data and subjective fatigue values of load-bearing walking.These were divided into three levels:without fatigue,moderate fatigue,and severe fatigue.The original data were extracted;gait segmentation,data screening,and feature extraction were performed;and the RF model was used for the machine learning of sample features.Finally,the accuracy rate,precision,confusion matrix,and area under the curve(AUC)were calculated to evaluate the detection effects of the different IMU combinations.Results The accuracy of a right femur IMU was 82.55%and that of five IMU combinations was 87.94%.For a combination of IMUs,at least one upper-body IMU was included,and the left limb had more IMUs than the right limb.The RF model had a higher level of fatigue detection for load-bearing walking.When four IMUs were used,the AUCs of three-level fatigue were 0.99,0.97,and 0.99,respectively.Conclusions IMU technology and the RF algorithm have high accuracy and classification capability in the three-level fatigue detection task for walking with a backpack load.In practical applications,the use of one-five IMUs is recommended.Moreover,a combination of an upper-body IMU and a lower-limb IMU configuration scheme is preferred.

load-bearing walkinggaitinertial sensorsfatigue recognitionmachine learning

曹燕、刘卓瀚、伍勰

展开 >

上海体育大学 运动健康学院,上海 200438

复旦大学 计算机科学技术学院,上海 200433

负重行走 步态 惯性传感器 疲劳识别 机器学习

2024

医用生物力学
上海第二医科大学

医用生物力学

CSTPCD北大核心
影响因子:0.858
ISSN:1004-7220
年,卷(期):2024.39(5)