首页|基于XCM模型预测排球运动员前交叉韧带应力

基于XCM模型预测排球运动员前交叉韧带应力

扫码查看
目的 通过XCM深度神经网络模型预测排球运动员扣球落地左腿前交叉韧带(anterior cruciate ligament,ACL)应力情况。方法 基于核磁共振和CT影像建立完整的膝关节有限元模型;通过 8 镜头Qualisys动捕系统和Kistler三维测力台同步采集排球运动员运动学和动力学数据;通过OpenSim中肌骨模型计算膝关节力矩,将关节力矩作为有限元模型输入,输出 ACL 应力;将运动学、动力学数据作为神经网络的输入,ACL 应力作为输出。结果 排球运动员扣球落地ACL等效应力峰值为(27。7±0。36)MPa,最大主应力为(8。2±0。23)MPa,最大剪切应力为(14。7±0。32)MPa;等效应变(5。7±0。008)%,最大主应变(5。0±0。006)%、最大剪切应变为(7。6±0。009)%。预测值与计算值间归一化的均方根误差为 5。84%~7。12%,均方根误差为 0。251~0。282。结论 XCM模型可在一定范围内预测排球运动员扣球过程中ACL应力情况。研究结果为获得排球运动员生物力学数据提供新途径,以及帮助排球运动员预防ACL损伤提供有效方法。
Predicting Anterior Cruciate Ligament Stress in Volleyball Players Based on the XCM Model
Objective To predict the stress on the anterior cruciate ligament(ACL)in the left leg of a volleyball player during ball-snapping landing,by using an XCM deep neural network model.Methods A complete finite element model of the knee joint was established based on magnetic resonance(MR)and CT images.The kinematic and kinetic data of the volleyball player were collected synchronously using an eight-lens Qualisys motion capture system and a Kistler three-dimensional(3D)force platform.The knee joint moments were calculated using the musculoskeletal model in OpenSim.The joint moments were used as the input to the finite element model,with ACL stresses as the output.The kinematic and kinetic data were used as the input for the neural network,with ACL stress as the output.Results The peak equivalent ACL stress of the volleyball player during ball-snapping landing was(27.7±0.36)MPa,the maximum principal stress was(8.2±0.23)MPa,the maximum shear stress was(14.7±0.32)MPa,the equivalent strain was(5.7±0.008)%,the maximum principal strain was(5.0±0.006)%,and the maximum shear strain was(7.6±0.009)%.The normalized root mean square error(NRMSE)between the predicted and calculated values ranged from 5.84%to 7.12%.The root mean square error(RMSE)ranged from 0.251 to 0.282.Conclusions The XCM model can predict the ACL stress during volleyball spikes within a certain range.This study has provided a new method to obtain biomechanical data on volleyball players as well as an effective method to help volleyball players prevent ACL injuries.

deep neural networkfinite element modelanterior cruciate ligament(ACL)volleyballball-snapping landing

张楠、孟庆华、鲍春雨

展开 >

天津体育学院 社会体育学院,天津 301617

天津市运动损伤与康复虚拟仿真实验教学中心,天津 301617

天津体育学院 体育经济与管理学院,天津 301617

天津体育学院 运动健康学院,天津 301617

展开 >

深度神经网络 有限元模型 前交叉韧带 排球 扣球落地

2024

医用生物力学
上海第二医科大学

医用生物力学

CSTPCD北大核心
影响因子:0.858
ISSN:1004-7220
年,卷(期):2024.39(6)