首页|一维可压缩微极流模型解的衰减率

一维可压缩微极流模型解的衰减率

扫码查看
本文主要研究粘性系数依赖于密度的一维等熵可压缩微极流模型解的时间衰减率问题.对于参数α,γ∈ R,考虑压强p(ρ)=ργ和粘性系数μ(ρ)=ρα.我们首先利用先验假设及一些精细的能量估计,研究一维等熵可压缩微极流模型Cauchy问题在常数状态扰动下大初值强解的整体存在性与大时间行为.进一步,利用反导数和时间加权能量方法,我们研究流体比容v(t,x)和速度u(t,x)的时间衰减率.
Decay Rates of Solutions for the One-dimensional Compressible Micropolar Fluid Model
This paper is concerned with the time decay rates of strong solutions for the one-dimensional isentropic compressible micropolar fluid model with density-dependent viscosity.The pressure p(ρ)=ργ and the viscosity coefficient μ(ρ)=ρα for some parameters α,γ ∈ R are considered.By using a priori assumption and some refined energy estimates,we show that the global existence and large-time behavior of strong solutions with large initial data for the Cauchy problem under the perturbation of the constant state.Furthermore,by using the anti-derivative and time weighted energy method,the algebraic time decay rates for the specific volume v(t,x)and the velocity u(t,x)are also established.

micropolar fluid modelglobal stabilitydecay rate

王迪

展开 >

亳州学院电子与信息工程系,亳州 236800

微极流方程 整体稳定性 衰减率

2025

应用数学学报
中国数学会 中国科院数学与系统科学研究院

应用数学学报

北大核心
影响因子:0.405
ISSN:0254-3079
年,卷(期):2025.48(1)