首页|Approximation Properties of Vectorial Exponential Functions

Approximation Properties of Vectorial Exponential Functions

扫码查看
This contribution is dedicated to the celebration of Rémi Abgrall's accomplishments in Applied Mathematics and Scientific Computing during the conference"Essentially Hyper-bolic Problems:Unconventional Numerics,and Applications".With respect to classical Finite Elements Methods,Trefftz methods are unconventional methods because of the way the basis functions are generated.Trefftz discontinuous Galerkin(TDG)methods have recently shown potential for numerical approximation of transport equations[6,26]with vectorial exponential modes.This paper focuses on a proof of the approximation properties of these exponential solutions.We show that vectorial exponential functions can achieve high order convergence.The fundamental part of the proof consists in proving that a cer-tain rectangular matrix has maximal rank.

Trefftz methodTransport equationVectorial exponential functions

Christophe Buet、Bruno Despres、Guillaume Morel

展开 >

CEA,DAM,DIF,91297 Arpajon,France

Laboratoire en Informatique Haute Performance Pour le Calcul et la Simulation,CEA,Université Paris-Saclay,91680 Bruyères-le-Châtel,France

Laboratoire Jacques-Louis Lions,UMR 7598,Sorbonne Université,75005 Paris,France

IMT Atlantique,29238 Brest,France

展开 >

2024

应用数学与计算数学学报
上海大学

应用数学与计算数学学报

影响因子:0.165
ISSN:1006-6330
年,卷(期):2024.6(3)