首页|利用改进YOLOv5s模型检测番茄果实成熟度及外观品质

利用改进YOLOv5s模型检测番茄果实成熟度及外观品质

扫码查看
以粉果番茄为试验材料,基于深度学习方法开展了番茄果实成熟度和外观品质的检测研究.试验中共采集番茄图片数据2 036张,通过处理扩增至5 316张,然后将数据进行标注和文件转换,构建了试验用数据集;通过在YOLOv5s模型中加入CA注意力机制、替换Stem block结构、结合识别需求优化检测层尺度、替换K-means++聚类算法来实现SC-YOLOv5s识别精度提升,提高模型的特征表达能力;通过在SC-YOLOv5s模型中加入Fire module结构进行轻量化卷积、降低Bottleneck模块的参数量来实现SC-YOLOv5s-lite轻量化设计,提升模型在硬件上的检测速度;将SC-YOLOv5s-lite模型在训练集上进行训练优化、消融试验和性能对比,结果表明,SC-YOLOv5s-lite模型内存大小为7.73 M,其准确率为89.04%,召回率83.35%,平均精度91.34%,检测时间为143 ms,相比于YOLOv5s,模型参数量降低了 45.57%,模型大小压缩了 44.86%,平均精度提升3.98%,检测时间减少20.99%,优势明显,更适合于硬件上部署.
Detecting Tomato Fruit Ripeness and Appearance Quality Based on Improved YOLOv5s
The study was conducted on the detection of tomato fruit maturity and appearance quality based on deep learning methods using pink tomato as the experimental material.Two thousand and thirty-six tomato image data were collected and amplified to 5 316 through preprocessing.Then,the data was annotated and converted into files to construct an experimental dataset.The experiment improves the accuracy of SC-YOLOv5s by adding CA attention mechanism,replacing the Stem block structure,optimizing the detection layer scale based on recognition requirements,and replacing the K-means++clustering algorithm to improve the model's feature expression ability.By adding a fire module structure to SC-YOLOv5s for lightweight convolution and reducing the parameter count of the Bottleneck module,the SC-YOLOv5s-lite lightweight design is achieved,improving the detection speed of the model on hardware;Train and optimize the SC-YOLOv5s-lite model on the training set.The results showed that the memory usage of the SC-YOLOv5s-lite model was 7.73 M,with an accuracy rate of 89.04%,a recall rate of 83.35%,an average accuracy of 91.34%,and a detection time of 143 ms.Compared to YOLOv5s,the model parameter quantity is reduced by 54.57%,model size is compressed by 44.86%,with an average accuracy improvement of 3.98%,and the detection time is reduced by 20.99%.It has obvious advantages and is more suitable for hardware deployment.

tomatomaturityappearance qualitydetectiondeep learningcomputer vision

孙宇朝、李守豪、夏秀波、杨玮、李民赞、张焕春

展开 >

山东省烟台市农业科学研究院,山东烟台 265500

中国农业大学智慧农业系统集成研究教育部重点实验室,北京 100083

烟台市智慧农业研究中心,山东烟台 265500

番茄 成熟度 外观品质 检测 深度学习 计算机视觉

山东省现代优势产业集群+人工智能试点示范单位项目烟台市设施番茄育种攻关团队项目

鲁工信工联[2020]89号烟农[2023]174号

2024

园艺学报
中国园艺学会 中国农业科学院蔬菜花卉研究所

园艺学报

CSTPCD北大核心
影响因子:1.127
ISSN:0513-353X
年,卷(期):2024.51(2)
  • 31