首页|贝叶斯因子序列分析:实验设计中平衡信息与效率的新方法

贝叶斯因子序列分析:实验设计中平衡信息与效率的新方法

Sequential Bayes Factor Analysis:Balance Informativeness and Efficiency in Designing Experiments

扫码查看
实验设计的关键是平衡信息量与效率.贝叶斯因子序列分析利用贝叶斯因子不断更新证据的特点,通过贝叶斯因子标准和在收集数据过程中的序列分析来平衡信息量与效率.本文展示如何使用开源软件JASP和R实现该分析的三个步骤:确定关键效应、确定停止标准、数据收集中序列分析并决策.该方法考虑现实条件且简单易行,可帮助研究者更有效地进行实验.
The key of experimental design is to balance between informativeness and efficiency.However,power anal-ysis only focuses on informativeness and is difficult to implement.Here,sequential Bayes factor analysis takes the advantage of Bayes factor's ability to con-tinuously update the evidence and reach a trade-off between informativeness and efficiency by setting Bayes factor criteria and the sequential analysis dur-ing data collection.The present primer demonstrates how to perform three steps of sequential Bayes factor analysis using the open-source software JASP and R.This method considers practical issues in real re-search practices and is easy to implement,which can help researchers to design more efficient experiments.

sequential Bayes factor analysispower analysisexperimental designJASPR

郑元瑞、胡传鹏

展开 >

南京师范大学心理学院,南京 210097

昆明城市学院教育学院,昆明 650106

贝叶斯因子序列分析 统计检验力 实验设计 JASP R

2024

应用心理学
浙江省心理学会 浙江大学

应用心理学

CSSCICHSSCD
影响因子:0.3
ISSN:1006-6020
年,卷(期):2024.30(2)
  • 55