首页|乘用车电控空气悬架高度控制策略

乘用车电控空气悬架高度控制策略

扫码查看
为了提高乘用车电控空气悬架在车身高度调节过程的控制精度,设计了基于粒子群的PID控制器.首先通过对空气悬架系统工作机理的分析,利用AMESim建立单轮空气悬架数学模型,针对车高调节过程中出现的"过充过放"问题,设计了基于粒子群的PID控制器,然后在AMESim-Simulink-Carsim联合仿真平台中建立了整车空气悬架模型对其控制效果进行验证.最后进行了实车测试.结果表明,所设计的基于粒子群的PID控制器在不同工况下的车身高度稳态误差均小于2 mm,且没有出现明显的高度反复调节或者控制超调现象.
Height Control Strategy of Electronic Control Air Suspension of Passenger Car
In order to improve the control precision of electronically controlled air suspension of passenger car in the process of body height adjustment,a PID controller based on particle swarm is designed.Through the analysis of the working mechanism of the air suspension system,the mathematical model of the single-wheel air suspension is established by using AMESim.Aiming at the problem of"overcharging and over-discharging"in the process of vehicle height adjustment,a PID controller based on particle swarm is designed,and a vehicle air suspension model is established based on the AMESim-Simulink-Carsim joint simulation platform to carry out its control effect verify.Finally,a real vehicle test is carried out.The results show that the steady-state errors of the designed PID controller based on particle swarm under different working conditions are less than 2 mm,and there is no obvious phenomenon of repeated height adjustment or control overshoot.

electronic control air suspensionPSO-PIDheight control

刘锦超、李军伟、陈斌、赵雷雷、李凯

展开 >

山东理工大学交通与车辆工程学院,山东淄博 255049

中国长安汽车集团有限公司,四川成都 610105

电控空气悬架 粒子群PID算法 高度控制

山东省自然科学基金

ZR2020ME127

2024

液压与气动
北京机械工业自动化研究所

液压与气动

CSTPCD北大核心
影响因子:0.453
ISSN:1000-4858
年,卷(期):2024.48(2)
  • 17