首页|SPA-HRDE在机械设备声信号故障诊断中的应用

SPA-HRDE在机械设备声信号故障诊断中的应用

扫码查看
针对现有故障诊断方法存在接触式采集、精度低等问题,提出了一种结合平滑先验分析和层次反向散布熵的机械设备故障诊断方法.首先,通过SPA将声音信号分解为趋势项和去趋势项.随后,利用HRDE提取趋势项和去趋势项信号的层次熵值,构建故障特征样本;最后,利用蜜獾算法对支持向量机的关键参数进行搜索,建立参数最优的故障识别模型,将故障特征输入到HBA-SVM分类器中进行故障识别,并基于离心泵和滚动轴承两种机械设备的实验评估证实了所提方法的有效性.试验结果表明:该方法分别取得了 100%和97%的故障识别精度.相较于其他故障诊断方法,该方法能够充分提取声信号中的故障信息,实现更高精度的故障诊断,具有很强的鲁棒性.
Application of SPA-HRDE in Acoustic Signal Fault Diagnosis of Mechanical Equipment
Aiming at the problems of contact acquisition and low accuracy of existing fault diagnosis methods,a mechanical fault diagnosis method combining smooth prior analysis and hierarchical reverse dispersion entropy is proposed.First,the acoustic signal is decomposed into trending and de-trending items by SPA.Then,the HDE is used to extract the hierarchical entropy values of trend item and de trend item signals,and fault feature samples are constructed;Finally,the honey badger algorithm is used to search the key parameters of support vector machine,a fault recognition model with optimal parameters is established,and the fault features are input into the HBA-SVM classifier for fault recognition.The experimental evaluation based on centrifugal pump and rolling bearing proves the effectiveness of the proposed method.The test results show that the method achieves 100%and 97%identification accuracy respectively in the fault identification of centrifugal pump and rolling bearing.Compared with other fault diagnosis methods,the method can fully extract the fault information in the acoustic signal,achieve higher precision fault diagnosis,and has strong robustness.

sound signalsmooth prior analysishierarchical reverse dispersion entropymachinery equipmenthoney badger algorithmfault diagnosis

刘儒林、汪进、谢忠志

展开 >

浙江工业大学 机械工程学院,浙江 杭州 310014

重庆开放大学 重庆工商职业学院,重庆 400052

江苏电子信息职业学院数字装备学院,江苏淮安 223003

泰州职业技术学院智能制造学院,江苏泰州 225300

展开 >

声音信号 平滑先验分析 层次反向散布熵 机械设备 蜜獾算法 故障诊断

浙江省自然科学基金

LQ21E060008

2024

液压与气动
北京机械工业自动化研究所

液压与气动

CSTPCD北大核心
影响因子:0.453
ISSN:1000-4858
年,卷(期):2024.48(3)
  • 30