首页|基于GA-PSO混合优化SVM的机载EHA故障诊断

基于GA-PSO混合优化SVM的机载EHA故障诊断

扫码查看
针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型.为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO)混合优化支持 向量机(Support Vector Machine,SVM)的故障诊断算法.GA鲁棒性好且全局搜索能力强但收敛速度慢,PSO对样本规模不敏感且具有记忆功能但易陷入局部最优,故融合两种算法寻找SVM的最优参数.另外,为了解决传统SVM多分类方法"一对多"和"一对一"易出现不可分的问题,建立一种偏二叉树结构的SVM多分类模型.对于采集的原始数据高度重合的情况,引入时域特征统计量进一步提升模型的分类性能.实验结果表明,提出的混合优化算法寻优速度更快、所寻参数更佳,同时用该算法优化的SVM分类模型相比于其他5类常用的机器学习模型分类效果更好,故障识别正确率可达97.7%.
Fault Diagnosis of Airborne EHA Based on GA-PSO Hybrid Optimization SVM
Aiming at the typical faults of airborne electro-hydrostatic actuator(EHA),the fault principle was analyzed and the simulation model was established in MATLAB/Simulink.To identify fault types efficiently,a fault diagnosis algorithm based on genetic algorithm(GA)and particle swarm optimization(PSO)hybrid optimization support vector machine(SVM)was proposed.GA has good robustness and global search ability,but its convergence speed is slow.PSO is insensitive to sample size and has memory function,but it's easy to fall into local optimization.Thus,the two algorithms were combined to find the optimal parameters of SVM.In addition,the traditional multi-classification methods of SVM'one to many'and'one to one'are easy to be inseparable,to solve the problem,a method with partial binary tree structure was proposed.For solving the collected original data were highly coincident,time domain feature statistics were introduced to improve the classification performance.The experimental results show the proposed GA-PSO has faster optimization speed and better parameters.At the same time,the classification effect of SVM optimized by this algorithm is better than other five commonly used machine learning models,and the accuracy of fault identification is 97.7%.

airborne EHAgenetic algorithmparticle swarm optimizationpartial binary tree structuremulti-class SVM

覃刚、葛益波、姚叶明、周清和

展开 >

中国航空研究院研究生院航空科学与工程学院,江苏扬州 225111

中航工业金城南京机电液压工程研究中心,江苏南京 211106

航空机电系统综合航空科技重大实验室,江苏南京 211106

机载EHA 遗传算法 粒子群算法 偏二叉树结构 多分类SVM

2024

液压与气动
北京机械工业自动化研究所

液压与气动

CSTPCD北大核心
影响因子:0.453
ISSN:1000-4858
年,卷(期):2024.48(5)
  • 24