首页|液压伺服滑阀工作边冲蚀行为及影响因素

液压伺服滑阀工作边冲蚀行为及影响因素

扫码查看
液压伺服滑阀阀口工作边易受油液中颗粒污染物的冲蚀作用,诱发伺服阀性能退化.采用阀口工作边淹没射流冲蚀可视化实验和固液两相流数值计算方法,研究颗粒冲击工作边的冲蚀行为及影响因素.结果表明:颗粒冲击工作边的冲蚀行为主要有刮擦-滑动、碰撞-滑动、悬浮-翻转以及边碰行为;1.05 MPa下,边碰行为颗粒的最大速度可达40.41 m/s,冲击能最高,且反弹速度最小仅4.59 m/s,对工作边产生的冲蚀破坏最大;1.2 MPa颗粒冲击比与边碰率比0.9 MPa和1.05 MPa更高,分别为46%和7%;冲击比和边碰率随粒径增大而增加;低黏度油液的冲击比和边碰率大于高黏度油液,黏度为0.01634 Pa·s时分别可达94%和17%.研究结果对揭示液压伺服滑阀冲蚀破坏机理及抗冲蚀设计具有重要意义.
Erosion Behavior and Influence Factors of Hydraulic Servo Spool Valve Working Edge
The working edge of the hydraulic servo spool valve is susceptible to erosion caused by particle pollutants in the oil,resulting in a degradation of the servo valve performance.This study investigates the erosion behavior and influencing factors of particles impacting the valve orifice's working edge using submersible jet erosion visualization experiments and solid-liquid two-phase flow numerical calculations.The results indicate that erosion behaviors can be categorized into four types:rubbing-sliding,bumping-sliding,suspension-overturning,and edge-collision.Edge-collision particles exhibit maximum velocities up to 40.41 m/s with high impact energy but minimal rebound speed of only 4.59 m/s,thereby causing significant erosion damage to the working edge.Moreover,at 1.2 MPa pressure level,both particle impact ratio and edge-collision ratio are higher compared to those at 0.9 MPa and 1.05 MPa levels with values of 46%and 7%,respectively.The impact ratio and edge-collision ratio increase with the increase of particle size.The impact ratio and edge-collision ratio of low viscosity oil are higher than those of high viscosity oil,and can reach 94%and 17%respectively when the viscosity is 0.01634 Pa·s.This study significantly contributes to understanding the mechanism behind erosion failure as well as anti-erosion design considerations for hydraulic servo spool valves.

hydraulic servo spool valveworking edgeerosion behaviorvisualizationedge-collision rate

刘新强、王聪、冀宏、林广、齐铭桦、肖尧

展开 >

兰州理工大学能源与动力工程学院,甘肃兰州 730050

特种泵阀及流控系统教育部重点实验室,甘肃兰州 730050

浙江大学流体动力基础件与机电系统全国重点实验室,浙江杭州 310027

液压伺服滑阀 工作边 冲蚀行为 可视化 边碰率

国家自然科学基金青年基金流体动力基础件与机电系统全国重点实验室开放基金甘肃省教育厅高校科研创新平台重大培育项目

52005234GZKF-2022152024CXPT-09

2024

液压与气动
北京机械工业自动化研究所

液压与气动

CSTPCD北大核心
影响因子:0.453
ISSN:1000-4858
年,卷(期):2024.48(9)
  • 5