首页|基于径向基函数神经网络算法的高频转阀阀芯稳定性

基于径向基函数神经网络算法的高频转阀阀芯稳定性

扫码查看
针对伺服电机驱动高频转阀时受液动力矩变化影响造成高频输出精度下降的问题,以液压马达作为动力源,提出一种基于径向基函数神经网络算法的转阀阀芯转速控制策略.首先,搭建高频转阀阀芯转速控制系统的数学模型;其次根据数学模型在MATLAB/Simulink平台搭建仿真模型,对不同算法作用下阀芯转速控制特性进行仿真分析;最后建立高频转阀转速控制系统实验台,对不同算法作用下阀芯转速控制特性进行实验研究和理论验证.结果表明:与常规PID控制方法相比,基于径向基函数神经网络的高频转阀转速控制策略转速控制系统阶跃响应所需调整时间最少为0.16 s,超调量小;三角波与正弦波转速跟踪误差均值下降最大值分别为46.51%、53.69%;6 MPa、10 MPa下,转速稳态误差均值分别下降34.92%、38.26%.径向基函数神经网络算法有效提高了高频转阀阀芯转速控制精度.
Stability of High-frequency Rotary Valve Spool Based on Radial Basis Function Neural Network Algorithm
In order to address the problem of high-frequency output accuracy degradation caused by hydrodynamic torque change when hydraulic motor drives high-frequency rotary valves,a rotary valve spool speed control strategy based on radial basis function neural network algorithm is proposed by using the hydraulic motor as the driving source.Firstly,the mathematical model of the high-frequency rotary valve spool speed control system is constructed.Secondly,the simulation model is constructed according to the mathematical model on the platform of MATLAB/Simulink,and the control characteristics of the spool speed under the action of different algorithms are simulated and analyzed.Finally,the experimental bench of the speed control system of high-frequency rotary valve is set up,and the speed control characteristics of the spool speed under the action of different algorithms are experimentally researched and theoretically verified.The results show that the radial basis function neural network-based high-frequency rotary spool valve speed control strategy,compared with the conventional PID control method,the minimum adjustment time required for the step response of the speed control system is 0.16 s,and the overshooting amount is small;the mean value of the triangular wave and sinusoidal wave speed tracking error decreases by a maximum of 46.51%and 53.69%;and the mean values of the steady state errors of the speed control system are reduced by 34.92%and 38.26%under 6 MPa and 10 MPa respectively.The radial basis function neural network algorithm effectively improves high-frequency rotary valve's spool speed control accuracy.

radial basis function neural network algorithmhigh-frequency rotary valvehydraulic motorspeed control

薛召、陈泽吉、贾文昂、白继平

展开 >

浙江交通职业技术学院 轨道交通学院,浙江 杭州 311112

浙江工业大学特种装备制造与先进加工技术教育部/浙江省重点实验室,浙江杭州 310023

径向基函数神经网络算法 高频转阀 液压马达 转速控制

浙江省自然科学基金浙江省首批职业教育教师教学创新团队研究项目中国高校产学研创新基金项目

LY21E050015TD2022022022BC126

2024

液压与气动
北京机械工业自动化研究所

液压与气动

CSTPCD北大核心
影响因子:0.453
ISSN:1000-4858
年,卷(期):2024.48(9)
  • 11