首页|基于对抗蒸馏的轴向柱塞泵关键摩擦副磨损状态在线辨识轻量化方法

基于对抗蒸馏的轴向柱塞泵关键摩擦副磨损状态在线辨识轻量化方法

扫码查看
在线辨识轴向柱塞泵磨损状态对保证液压传动与控制系统的稳定可靠运行具有重要意义,但实际工况下的辨识性能受强噪声干扰.磨损状态辨识模型能通过对抗训练增强抗噪声鲁棒性,但庞大的参数量限制了其在边缘计算设备上的应用.为了兼顾抗噪声鲁棒性和模型体量,提出了一种基于对抗蒸馏的磨损状态在线辨识轻量化方法,设计了基于一维卷积神经网络的学生模型和教师模型,学生模型生成对抗样本作为知识迁移数据集,并通过知识蒸馏学习教师模型的鲁棒特征知识.通过故障注入、对比实验和消融实验,表明所提方法能兼具抗噪声鲁棒性强和模型结构轻量的优势.通过边缘部署和在线验证实验,验证所提方法能实时准确地辨识轴向柱塞泵磨损状态.
A Lightweight Method Based on Adversarial Distillation for Online Wear State Recognition of Key Friction Pairs in Axial Piston Pump
Online wear state recognition of key friction pairs in the axial piston pump is crucial for ensuring the stability and reliability of the whole hydraulic transmission and control system.However,wear state recognition performance is always hindered by strong noise interference in real working conditions.Although wear state recognition models can enhance noise robustness through adversarial training,their large number of parameters limits the application on edge computing devices.To balance noise robustness and model scale,a lightweight method based on adversarial distillation for online wear state recognition is proposed.A student model and a teacher model based on one dimension convolutional neural network are designed.The student model generates adversarial examples as a knowledge transfer dataset and learns robust feature knowledge from the teacher model through knowledge distillation.Through fault injection,comparison experiments,and ablation experiments,the proposed method demonstrates strong noise robustness and lightweight model structure advantages.Edge deployment and online verification experiments show that the proposed method can accurately recognize the wear state of the axial piston pump in real time.

axial piston pumpwear state recognitionedge computingnoise interferenceknowledge distillationadversarial examples

王丹丹、苗克非、吕飞、刘施镐、黄伟迪、张军辉

展开 >

浙江大学流体动力基础件与机电系统全国重点实验室,浙江 杭州 310027

北京精密机电控制设备研究所,北京 100076

轴向柱塞泵 磨损状态辨识 边缘计算 噪声干扰 知识蒸馏 对抗样本

国家重点研发计划国家自然科学基金国家自然科学基金浙江省重点研究发展计划

2021YFB201190252105075U21A20124022C01039

2024

液压与气动
北京机械工业自动化研究所

液压与气动

CSTPCD北大核心
影响因子:0.453
ISSN:1000-4858
年,卷(期):2024.48(10)