首页|基于YOLOv8同步动态检测与局部语义视觉SLAM

基于YOLOv8同步动态检测与局部语义视觉SLAM

扫码查看
目的 视觉SLAM作为自动驾驶和移动机器人的核心技术之一,传统算法无法应对高度动态的环境,也缺乏地图的语义信息,解决动态物体对SLAM系统的影响是研究的主要目标,也是当前热点问题之一。方法 提出一个新的基于YOLOv8同步动态检测与局部语义分割的方法,来实现动态环境下的位姿估计与局部语义建图。首先,通过应用YOLOv8对输入图像进行同步动态检测和语义分割,使用目标检测结果的目标框对动态特征点进行剔除,再运用静态特征点进行姿态估计,然后在系统的语义建图线程中,对语义分割后的图像加入扩张掩模,最后使用点云库进行语义地图的构建,从而产生能够应用于实际场景的语义地图。结果 在TUM数据集中进行了比较试验,数据显示:这种方法相对于传统方法能提高98。1%的位姿准确率,并且在实时性测试中,本文算法的速度也优于同类算法,而且可以在同一时间创建出局部语义地图。结论 基于YOLOv8同步动态检测与局部语义的方法来处理常规场景下的动态物体对SLAM系统的影响十分有效,且实时性高,但对于一些特殊场景如摄像机大幅旋转等,由于目标检测的失效而导致动态特征剔除失败,从而系统精度降低。
Synhronous Dynamic Detection and Local Semantic Visual SLAM Based on YOLOv8
Objective Visual SLAM,one of the core technologies for autonomous driving and mobile robots,is currently unable to cope with highly dynamic environments with traditional algorithms and lacks semantic information in maps.Addressing the impact of dynamic objects on SLAM systems is the main objective of this study,which is also one of the current hot topics.Methods A novel method based on YOLOv8 synchronous dynamic detection and local semantic segmentation was proposed to realize the position estimation and local semantic map building in dynamic environments.Firstly,synchronous dynamic detection and semantic segmentation were performed on input images using YOLOv8.Dynamic feature points were eliminated using the target frame of the target detection result,and then static feature points were applied for pose estimation.Then,an expansion mask was added to the semantically segmented image in the semantic mapping thread of the system.Finally,a point cloud library was used for the construction of semantic maps,thereby generating semantic maps applicable to real-world scenarios.Results Comparative tests were conducted in the TUM dataset,and the data showed that this method can improve the position accuracy by 98.1%compared with traditional methods.Moreover,the speed of the proposed algorithm was superior in real-time testing compared with similar algorithms,and it can create local semantic maps simultaneously.Conclusion The method based on YOLOv8 for synchronous dynamic detection and local semantics is highly effective in addressing the impact of dynamic objects on SLAM systems in typical scenes,with high real-time performance.However,in some special scenarios such as significant camera rotation,the failure of object detection leads to the failure of dynamic feature removal,resulting in reduced system accuracy.

visual SLAMsemantic segmentationtarget detectionsemantic maps

杨海波、曹雏清

展开 >

安徽工程大学计算机与信息学院,安徽芜湖 241000

视觉SLAM 语义分割 目标检测 语义地图

2025

重庆工商大学学报(自然科学版)
重庆工商大学

重庆工商大学学报(自然科学版)

影响因子:0.548
ISSN:1672-058X
年,卷(期):2025.42(1)