首页|融合轻量化和注意力机制的语义分割算法

融合轻量化和注意力机制的语义分割算法

扫码查看
目的 考虑现有的图像语义分割网络存在分割精度低、参数量大等问题,提出一种融合轻量化和注意力机制的语义分割算法。方法 该算法在DeeplabV3+网络模型结构的基础上,使用MobileNetV2网络替换原始网络模型结构的Xception主干网络,构建轻量化语义分割网络结构,以此减少模型参数量和计算量,提高分割速度。同时,为了有效获取关注语义信息的正确特征,在编码阶段加入注意力模块机制,使网络模型在学习过程中只关注它所需要关注的点,提高图像分割精度,达到良好的分割效果。最后,在网络模型训练过程中引入BCE loss(Binary Cross Entropy loss)和Dice loss损失函数相结合,加快网络的快速收敛,对模型更好的优化,以此提高模型的分割精度。结果 通过在数据集PASCAL VOC2012实验验证表明,该算法的分割精度提高了 2。82个百分点,参数量降低了14。46 M。同时,数据集Cityscapes的实验结果也验证了该算法的优越性。结论 优化后的DeeplabV3+网络模型提高网络模型性能。
A Semantic Segmentation Algorithm Integrating Lightweight and Attention Mechanisms
Objective Considering the problems of low segmentation accuracy and a large number of parameters in existing semantic image segmentation networks,a semantic segmentation algorithm integrating lightweight and attention mechanisms was proposed.Methods The algorithm replaced the Xception backbone network of the original network model structure with the MobileNetV2 network based on the DeeplabV3+network model structure,and constructed a lightweight semantic segmentation network structure,so as to reduce the number of model parameters and computational volume and improve the segmentation speed.Additionally,an attention module mechanism was introduced during the encoding stage to effectively capture correct features of focused semantic information,enabling the network to focus only on relevant points during the learning process,thereby enhancing image segmentation accuracy and achieving satisfactory segmentation results.Finally,BCE loss(binary cross entropy loss)and Dice loss functions were combined in the network model training process to accelerate the rapid convergence of the network and better optimize the model,so as to improve the segmentation accuracy of the model.Results The experimental verification on the PASCAL VOC2012 dataset showed that the segmentation accuracy of the algorithm was increased by 2.82%,and the number of parameters was reduced by 14.46 M.Furthermore,experimental results on the Cityscapes dataset confirmed the superiority of the proposed algorithm.Conclusion The optimized DeeplabV3+network model enhances the performance of the network model.

semantic segmentationDeeplabV3+lightweight networkchannel attention mechanismloss function

袁嫚嫚、陆灏

展开 >

安徽理工大学计算机科学与工程学院,安徽淮南 232001

安徽人防建筑设计研究院,安徽 合肥 230022

语义分割 DeeplabV3+ 轻量化网络 通道注意力机制 损失函数

2025

重庆工商大学学报(自然科学版)
重庆工商大学

重庆工商大学学报(自然科学版)

影响因子:0.548
ISSN:1672-058X
年,卷(期):2025.42(1)