首页|应用于交通标志的单步多目标检测方法研究

应用于交通标志的单步多目标检测方法研究

扫码查看
目的 针对自然场景下交通标志检测存在的小目标精度低和目标特征信息不足等问题,提出一种使用残差网络(Residual Network,ResNet)和注意力机制(Attention Mechanism)的单步多目标检测算法 SSD(Single Shot MultiBox Detector),经过残差网络和注意力机制提取的特征向量输送到一个轻量、高效的特征融合模块中,最后将输出的feature map送到检测器中进行检测,从而提升交通标志检测的正确率。方法 首先,利用残差模块将特征进行1×1降维再3×3升维,然后将恒等映射和残差部分生成的特征图进行逐像素相加;其次,将CBAM(Convolutional Block Attention Module)引入到残差模块Conv4_x输出的特征图上,然后与残差模块Conv2_x,Conv3_x输出的特征图一起输入到高效的特征融合模块中进行特征融合,最后将融合后的特征图送入模型中检测以实现对交通标志的识别。结果 通过仿真实验验证,改进后的单步多目标检测算法SSD在中国交通标志检测数据集上进行检测的平均精度为90。55%,能够有效地提取小目标特征的信息。相较于主流算法CenterNet、YOLOv3、YOLOv4、Faster R-CNN、SSD分别提高了 2。57%、3。4%、2。79%、3。8%、4。93%。结论 优化后的目标检测方法相较于其他检测方法提取到了更多的特征信息,达到了更高的检测精度,在交通标志检测中具有良好的实用性和有效性。
Research on Single Shot Multibox Detector Applied to Traffic Signs
Objective In response to the issues of low accuracy in detecting small objects and insufficient target feature information in natural scenes for traffic sign detection,a single shot multibox detector(SSD)algorithm using residual network(ResNet)and attention mechanism was proposed.The feature vectors extracted by residual networks and attention mechanisms were fed into a lightweight and efficient feature fusion module.Finally,the output feature map was sent to the detector for detection,thereby enhancing the accuracy of traffic sign detection.Methods Firstly,the features were dimensionally reduced by 1×1 and then increased by 3×3 using residual modules,and then the feature maps generated by the constant mapping and residual parts were summed pixel by pixel.Secondly,the convolutional block attention module(CBAM)was introduced to the feature map output by Conv4_x of the residual module.Then,the feature map output by the residual module Conv4_x and the feature maps output by the residual modules Conv2_x and Conv3_x were fed into the efficient feature fusion module for feature fusion.Finally,the fused feature map was sent to the model for detection to realize the recognition of traffic signs.Results Through simulation experiments,the improved SSD algorithm achieved an average precision of 90.55%for detection on the Chinese traffic sign detection dataset,effectively extracting feature information from small objects.Compared with mainstream algorithms including CenterNet,YOLOv3,YOLOv4,Faster R-CNN,and SSD,the improved SSD algorithm improved the accuracy by 2.57%,3.4%,2.79%,3.8%,and 4.93%,respectively.Conclusion The optimized object detection method extracts more feature information and achieves higher detection accuracy compared with other detection methods,demonstrating good practicality and effectiveness in traffic sign detection.

traffic sign detectionSSD algorithmresidual networkfeature fusionCBAM

杜云龙、强俊、王洪铭、肖光磊、孙宇

展开 >

安徽工程大学计算机与信息学院,安徽芜湖 241000

交通标志检测 SSD算法 残差网络 特征融合 CBAM

2025

重庆工商大学学报(自然科学版)
重庆工商大学

重庆工商大学学报(自然科学版)

影响因子:0.548
ISSN:1672-058X
年,卷(期):2025.42(1)