首页|基于稀疏化卷积网络剪枝的火焰图像识别方法

基于稀疏化卷积网络剪枝的火焰图像识别方法

扫码查看
目的 野火预警大多采用烟雾或红外传感器检测,且这些传感器在大型开放式空间下,容易受到环境的影响,从而很难进行开放场所的精准火灾预警,而优越的火焰检测模型往往存在过多的参数量,且存在结构冗余的问题,基于此问题,提出一种改进的VGG深度卷积网络架构。方法 以映射变换为基础,进行像素值调整,在保证分类精度的前提下,采用L1正则化保证稀疏性,并基于BN层进行结构化剪枝,从而降低模型储存数据量,得到精简的模型。结果 大量的仿真试验结果表明:该方法在不同剪枝比例下,在野火架构数据集上,检测与勘误率依然能够保持高的准确精度,改进的模型在剪枝率为80%时,准确率达到了 95。29%,提升了 0。92%,并有效解决了模型过参数化的问题;通过不同的微调训练,模型精度略微超过没有进行剪枝时的模型,且在参数量上少了近20倍,并随着剪枝率的上升,检测效果在原有精度水平上无明显下降,甚至略高于原始模型精度,这说明在训练过程中,有大量的冗余权重。结论 该方法可以大幅度缩减模型的储存量,并可保证较高的分类精度,具有较好的实际应用意义,可以应用在神经网络存储计算能力较弱的嵌入式设备中。
Fire Image Recognition Method Based on Sparse Convolutional Network Pruning
Objective Under most circumstances,wildfire warnings primarily rely on smoke or infrared sensors for detection.However,these sensors are susceptible to environmental interference,especially in large open spaces,making it challenging to achieve precise fire alerts in open areas.Additionally,superior flame detection models often have too many parameters and suffer from structural redundancy.Based on the above problems,an improved VGG deep convolutional network architecture was proposed.Methods Pixel value adjustments were made based on mapping transformations.While ensuring classification accuracy,L1 regularization was employed to ensure sparsity.Structural pruning was performed based on BN layers,thereby reducing the storage data volume of the model and obtaining a streamlined model.Results Extensive simulation results demonstrate that this method maintains high detection and correction accuracy on wildfire architecture datasets under different pruning ratios.The improved model achieves an accuracy of 95.29%at a pruning rate of 80%,an increase of 0.92%,effectively addressing the issue of model over-parameterization.Through various fine-tuning training processes,the accuracy of the improved model slightly surpasses that of the unpruned model,while reducing the parameter volume by nearly twenty times.As the pruning rate increases,the model's detection performance does not significantly decrease from the original precision level,and in some cases,it even slightly exceeds the original model's precision.This indicates that there is a significant amount of redundant weights during training.Conclusion This method substantially reduces the model's storage volume while ensuring high classification accuracy,demonstrating practical significance for application in embedded devices with limited neural network storage and computing capabilities.

deep convolutional networkVGGfire detectionpruning

颜佳文、林献坤、潘溢洲

展开 >

上海理工大学机械工程学院,上海 200093

深度卷积网络 VGG 火焰检测 剪枝

2025

重庆工商大学学报(自然科学版)
重庆工商大学

重庆工商大学学报(自然科学版)

影响因子:0.548
ISSN:1672-058X
年,卷(期):2025.42(1)