首页|基于混合域注意力ResNeSt的结肠息肉分割模型

基于混合域注意力ResNeSt的结肠息肉分割模型

扫码查看
目的 针对因息肉大小不一,边界不清,光线影响,在图片中所占比例较小导致的分割精度不高的问题,提出了一种改进的U型结构网络BMR-Net。方法 该模型的框架为编码器-解码器形式,在编码器部分采用ResNeSt提取特征,在计算成本增加很少的情况下改善了特征提取效果;在编码器和解码器之间设计边界预测生成模块(BPGM)来聚合高层特征并加入改良空间金字塔池化模块,在其中引入注意力机制,提升多尺度信息融合效果,获得更精确的全局特征图表示;针对不清晰的边缘部分采用反向注意力模块,删除已预测区域,校正边界信息。结果 在 CVC-ClinicDB、Kvasir-SEG、CVC-ColonDB、ETIS-Larib、EndoScene 数据集上进行测试,mDice 值分别达到了0。930、0。903、0。743、0。712、0。874。结论 该方法分割性能和泛化性能均优于其他的先进方法,并且可以更加精确和完整地分割出小尺寸息肉,可以为结肠息肉患者提供早期预后信息。
Colon Polyp Segmentation Model Based on Mixed-domain Attention ResNeSt
Objective To address the challenges posed by polyps of varied sizes,unclear boundaries,lighting effects,and their relatively small proportions in images that result in lower segmentation accuracy,an improved U-shaped network structure,BMR-Net,was proposed.Methods The model adopted an encoder-decoder architecture.The encoder partially utilized ResNeSt for feature extraction,enhancing the feature extraction performance with only a slight increase in computational cost.Between the encoder and the decoder,a boundary prediction generation module(BPGM)was designed to aggregate high-level features and incorporate a modified spatial pyramid pooling module,in which an attention mechanism was introduced.This promoted multi-scale information fusion,obtaining a more accurate global feature map representation.For unclear edge areas,a reverse attention module was applied to remove previously predicted areas and correct the boundary information.Results Tests were conducted on the CVC-ClinicDB,Kvasir-SEG,CVC-ColonDB,ETIS-Larib,and EndoScene datasets,with mDice values reaching 0.930,0.903,0.743,0.712,and 0.874,respectively.Conclusion This method outperforms other advanced methods in terms of segmentation performance and generalization ability.Furthermore,it can segment small-sized polyps more precisely and completely,providing early prognosis information for patients with colon polyps.

image segmentationcolonic polypsResNeStencoder-decoder networkattention mechanism

周孟然、刘思怡、卞凯、王宁、高立鹏

展开 >

安徽理工大学电气与信息工程学院,安徽淮南 232001

图像分割 结肠息肉 ResNeSt 编解码网络 注意力机制

2025

重庆工商大学学报(自然科学版)
重庆工商大学

重庆工商大学学报(自然科学版)

影响因子:0.548
ISSN:1672-058X
年,卷(期):2025.42(1)