首页|基于改进YOLOv7-Tiny的交通车辆与行人轻量级目标检测算法

基于改进YOLOv7-Tiny的交通车辆与行人轻量级目标检测算法

扫码查看
针对传统的交通车辆与行人目标检测算法因数据量和计算量大而导致在实际场景应用中受限的问题,提出了一种基于改进YOLOv7-Tiny的轻量级交通车辆与行人目标检测算法.通过设计基于注意力机制和部分卷积的高效聚合网络模块,降低模型的参数量和计算量;设计带有跳跃连接的自适应多尺度特征融合模块,提高模型对小目标的检测能力;采用基于最小点距离边界框的回归损失函数,解决原损失函数在长宽比相同时收敛慢的问题;利用模型剪枝对改进后的模型进行剪枝优化,在减少参数量和计算量的同时,提高模型的运行效率.实验结果表明,与YOLOv7-Tiny相比,改进后的模型参数量和计算量分别下降了67.7%和63.3%,精度提高了0.26%,且模型体积极小,大小仅为4.4 MB.
Lightweight traffic vehicle and pedestrian target detection algorithm based on improved YOLOv7-Tiny
Aiming at the problem that the traditional traffic vehicle and pedestrian target detection algorithm is limited in the actual scene application due to the large amount of data and calculation,a lightweight traffic vehicle and pedestrian target detection algorithm based on improved YOLOv7-tiny is proposed.By designing an efficient aggregation network module based on attention mecha-nism and partial convolution,the amount of parameters and computation of the model are reduced.An adaptive multi-scale feature fusion module with jump connection is designed to improve the detection ability of the model for small targets.The regression loss function based on minimum point dis-tance bounding box is used to solve the problem that the original loss function converges slowly when the aspect ratio is the same.Model pruning is used to optimize the improved model,which not only reduces the amount of parameters and calculation,but also improves the operation efficiency of the model.The experimental results show that compared with YOLOv7-tiny,the number of parameters and calculation amount of the improved model are reduced by 67.7%and 63.3%respectively,and the accuracy is increased by 0.26%.Moreover,the model size is very small,only 4.4 MB.

lightweighttarget detectionefficient aggregation network moduleadaptive multi-scale fusionmodel pruningYOLOv7-Tiny

范谦、姚利德、赵宇、李海明、陈润豪

展开 >

扬州大学信息工程学院,江苏扬州 225127

轻量级 目标检测 高效聚合网络模块 自适应多尺度融合 模型剪枝 YOLOv7-Tiny

2024

扬州大学学报(自然科学版)
扬州大学

扬州大学学报(自然科学版)

影响因子:0.473
ISSN:1007-824X
年,卷(期):2024.27(6)