首页|基于长短时记忆模型的包虫病爆发风险预测混合模型的建立

基于长短时记忆模型的包虫病爆发风险预测混合模型的建立

扫码查看
该研究旨在建立一种基于时间序列分解方法与长短时记忆(LSTM)网络的混合模型,用于包虫病等传染性疾病未来爆发风险的预测.首先,从中国国家卫生部科学数据中心获取我国各省份2004-2019年包虫病的发病数据;其次,经过时间序列分解和LSTM网络分析建立混合预测模型;最后,对预测模型的准确性进行评估.结果表明,与单个LSTM模型相比,时间序列分解得出的趋势分量结合LSTM的混合模型表现出较低的测试误差,表明该模型在预测发病趋势方面具有更高的准确性.该混合模型的建立为包虫病发病风险的准确预测提供了参考和技术支持,对机器学习与传染病相结合的交叉学科领域进行深度探索提供了研究基础.
Establishment of Risk Prediction Model for Echinococcosis Disease Outbreak based on Long Short-term Memory
The aim of this study is to develop a hybrid model based on a time series decomposition method and a long short-term memory(LSTM)network to predict the risk of future outbreaks of infectious diseases such as baumatosis.Firstly,the incidence data of echinococcosis in China's provinces between 2004 and 2019 were obtained from the Scientific Data Centre of the National Ministry of Health of China.Secondly,a hybrid prediction model was then established by time series decomposition and LSTM network analysis.Finally,the accuracy of the prediction model was evaluated.The results showed that the hybrid model with trend components derived from time series decomposition combined with LSTM had a lower test error compared with the single LSTM model,indicating that the model has higher accuracy in incidence trends prediction.In conclusion,the hybrid model provides a reference and technical support for the incidence risk of encapsulated disease prediction with high accuracy,and provides a research basis for in-depth exploration of the interdisciplinary field combining machine learning and infectious diseases.

echinococcosismemorymodelriskforecastmachine learning

陈春蓉、赵瑾、贺兆源、李家宝、陈海兰、贾耿介

展开 >

广西大学动物科学技术学院,广西南宁 530004

中国农业科学院深圳农业基因组研究所,广东深圳 518000

包虫病 记忆 模型 风险 预测 机器学习

巴马人才科技专项

巴人科20210034

2024

现代畜牧科技
黑龙江省畜牧研究所

现代畜牧科技

影响因子:0.066
ISSN:2095-9737
年,卷(期):2024.(8)
  • 2