首页|基于形态学构建尺度空间与谱峭度的轴承故障诊断方法

基于形态学构建尺度空间与谱峭度的轴承故障诊断方法

扫码查看
针对高速列车轴箱轴承服役环境恶劣,故障特征难以提取的问题,提出了基于形态学构建尺度空间表征的经验小波变换(EWT)故障诊断方法.首先,提出基于形态学的尺度空间表征方法,实现共振频带边界的自适应识别;其次,将基于形态学构建的尺度空间表征与谱峭度相结合,识别出共振频带;然后,根据所识别的频带边界构造滤波器组,对信号进行自适应分解;最后,对分解信号进行包络谱分析,识别故障特征频率,实现轴承故障的诊断.高速列车轴箱轴承振动试验结果表明,该方法能够有效提高频带划分的准确性以及计算效率,准确诊断轴承故障.
Fault Diagnosis Method for Bearings Based on Morphological Construction of Scale Space and Spectral Kurtosis
In response to the problems of harsh service environment and difficult fault feature extraction of high-speed train axle box bearings,an empirical wavelet transform(EWT)fault diagnosis method is proposed based on morphological construction of scale space representation.Firstly,a scale space representation method is proposed based on morphology to achieve the adaptive recognition of resonance frequency band boundaries.Secondly,combining scale space representation based on morphology with spectral kurtosis to identify the resonance frequency bands.Then,a filter bank is constructed based on identified frequency band boundaries to adaptively decompose the signal.Finally,the envelope spectrum analysis is performed on decomposed signal to identify the fault feature frequencies and achieve the bearing fault diagnosis.The vibration test results of high-speed train axle box bearings show that the proposed method can effectively improve the accuracy of frequency band division and computational efficiency,and accurately diagnose the bearing faults.

rolling bearingfault diagnosiswavelet transformmorphologyscale spacekurtosis

杨旭、刘鹏飞、程伟欣、许增兵、刘泽潮

展开 >

石家庄铁道大学机械工程学院,石家庄 050043

石家庄铁道大学省部共建交通工程力学行为与系统安全国家重点实验室,石家庄 050043

滚动轴承 故障诊断 小波变换 形态学 尺度空间 峭度

2025

轴承
洛阳轴承研究所

轴承

北大核心
影响因子:0.336
ISSN:1000-3762
年,卷(期):2025.(1)