首页|基于振动信号的柔性薄壁轴承故障特征提取综述

基于振动信号的柔性薄壁轴承故障特征提取综述

Review on Fault Feature Extraction of Flexible Thin-Walled Bearings Based on Vibration Signals

扫码查看
由于高柔性和薄壁特性,柔性薄壁轴承产生的振动信号相较于普通滚动轴承更加微弱,并具有高度非线性和非平稳性的特点.此外,在柔性薄壁轴承的工作过程中,大尺寸径向变形会使其套圈形状变为椭圆形,从而产生周期性结构冲击,这些特点极大地增加了柔性薄壁轴承故障特征提取的难度.简述了柔性薄壁轴承的结构特点以及故障特征提取的流程和难点,详细介绍了柔性薄壁轴承振动信号的预处理及故障特征提取方法并对比分析了不同方法的原理及优缺点,最后对柔性薄壁轴承故障特征提取与状态监测技术的发展趋势进行了展望.
Due to high flexibility and thin-walled characteristics,the vibration signals generated by flexible thin-walled bearings are weaker than those of ordinary rolling bearings,and display the highly nonlinear and non-stationary features.Additionally,during operation of the bearings,the shape of rings transforms into an elliptical form as a result of large-sized radial deformations,consequently giving rise to occurrence of periodic structural shocks.These characteristics considerably augment the complexity in extracting fault features of the bearings.The structural characteristics of the bearings and the processes and difficulties of fault feature extraction are briefly described.The methods for vibration signal preprocessing and fault feature extraction of the bearings are introduced in detail,and the principles,strengths and weaknesses of different methods are comparatively analyzed.Finally,the development trend of technology for fault feature extraction and condition monitoring of the bearings is prospected.

rolling bearingflexible thin-walled bearingspeed reducervibration signaldenoisingpreprocessingfeature extraction

贾翔宇、吕中亮、李玲凤、唐银、周杰

展开 >

重庆科技大学 机械与智能制造学院,重庆 401331

滚动轴承 柔性薄壁轴承 减速器 振动信号 降噪 预处理 特征提取

2025

轴承
洛阳轴承研究所

轴承

北大核心
影响因子:0.336
ISSN:1000-3762
年,卷(期):2025.(2)